File size: 2,393 Bytes
be4a69d
990661d
 
 
be4a69d
990661d
 
 
be4a69d
990661d
 
 
be4a69d
 
990661d
 
be4a69d
990661d
be4a69d
990661d
 
 
 
 
 
 
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
be4a69d
990661d
 
 
 
 
 
 
 
be4a69d
990661d
be4a69d
990661d
 
 
 
 
 
 
 
 
 
 
 
be4a69d
 
990661d
be4a69d
990661d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: devicebert-base-cased-v1.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# devicebert-base-cased-v1.0

This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.6816
- Recall: 0.6691
- F1: 0.6753
- Accuracy: 0.8547

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 101  | nan             | 0.5981    | 0.5740 | 0.5858 | 0.8131   |
| No log        | 2.0   | 202  | nan             | 0.6673    | 0.6197 | 0.6427 | 0.8424   |
| No log        | 3.0   | 303  | nan             | 0.6926    | 0.6673 | 0.6797 | 0.8498   |
| No log        | 4.0   | 404  | nan             | 0.686     | 0.6271 | 0.6552 | 0.8473   |
| 0.3891        | 5.0   | 505  | nan             | 0.6853    | 0.6490 | 0.6667 | 0.8539   |
| 0.3891        | 6.0   | 606  | nan             | 0.6857    | 0.7020 | 0.6938 | 0.8563   |
| 0.3891        | 7.0   | 707  | nan             | 0.6900    | 0.6673 | 0.6784 | 0.8580   |
| 0.3891        | 8.0   | 808  | nan             | 0.6795    | 0.6782 | 0.6789 | 0.8514   |
| 0.3891        | 9.0   | 909  | nan             | 0.6906    | 0.6691 | 0.6797 | 0.8571   |
| 0.1315        | 10.0  | 1010 | nan             | 0.6816    | 0.6691 | 0.6753 | 0.8547   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1