metterian commited on
Commit
4ee5670
1 Parent(s): 9eb3c47

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -23
README.md CHANGED
@@ -37,35 +37,39 @@ While previous models like Llama-ko and Llama-2-ko experienced diminished Englis
37
 
38
  LLaMA-Pro-Ko's performance is evaluated on two fronts: its proficiency in English and its mastery of Korean, showcasing its capabilities as a bilingual model.
39
 
40
- ### KO - KoBEST
 
 
41
 
42
  **5shot**
43
 
44
- | | # token | copa | HellaSwag | boolq | sentiNeg | AVG |
45
- | ------------------------------------------------------------ | :-----: | :-----------: | :-----------: | ------------- | :-----------: | :----------: |
46
- | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.7626 | 0.4668 | 0.4657 | 0.8295 | 63.11 |
47
- | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.7927** | 0.4657 | **0.6977** | 0.7611 | 67.93 |
48
- | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.7737 | **0.4831** | <u>0.6824</u> | **0.8991** | **70.96** |
49
- | llama-pro-ko-8b | 10B | <u>0.7878</u> | <u>0.4748</u> | 0.6631 | <u>0.8752</u> | <u>70.02</u> |
50
 
51
  **10shot**
52
 
53
- | | # token | copa | HellaSwag | boolq | sentiNeg | mean |
54
- | ------------------------------------------------------------ | :-----: | :------: | :-------: | :---------: | :---------: | ------------ |
55
- | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.78 | 0.47 | <u>0.68</u> | 0.87 | 70.12 |
56
- | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.80** | 0.47 | **0.71** | 0.73 | 67.81 |
57
- | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.79 | **0.48** | 0.67 | <u>0.94</u> | **71.82** |
58
- | llama-pro-ko-8b | 10B | **0.80** | **0.48** | 0.60 | **0.97** | <u>71.12</u> |
59
-
60
- ### EN - Open LLM Benchmark
61
-
62
- | | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | AVG | diff |
63
- | :----------------------------------------------------------- | :------: | :----------: | :-------: | :----------: | :----------: | :----------: | :---: |
64
- | [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) | 53.07 | **78.59** | 46.87 | <u>38.76</u> | **74.03** | <u>58.26</u> | 0 |
65
- | [TencentARC](https://huggingface.co/TencentARC/LLaMA-Pro-8B)/LLaMA-Pro-8B | **54.1** | <u>77.94</u> | **47.88** | **39.04** | <u>73.95</u> | **58.58** | 0.32 |
66
- | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 48.46 | 75.28 | 39.56 | 34.49 | 72.14 | 53.99 | -4.28 |
67
- | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 46.84 | 69.48 | 29.86 | 35.35 | 66.30 | 49.57 | -8.70 |
68
- | llama-pro-ko-8b | | | | | | | |
 
 
69
 
70
 
71
 
 
37
 
38
  LLaMA-Pro-Ko's performance is evaluated on two fronts: its proficiency in English and its mastery of Korean, showcasing its capabilities as a bilingual model.
39
 
40
+ ### Korean Evaluation
41
+
42
+ #### KoBEST
43
 
44
  **5shot**
45
 
46
+ | | # tokens | copa | HellaSwag | boolq | sentiNeg | AVG |
47
+ | ------------------------------------------------------------ | :------: | :-----------: | :-----------: | ------------- | :-----------: | :----------: |
48
+ | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.7626 | 0.4668 | 0.4657 | 0.8295 | 63.11 |
49
+ | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.7927** | 0.4657 | **0.6977** | 0.7611 | 67.93 |
50
+ | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.7737 | **0.4831** | <u>0.6824</u> | **0.8991** | **70.96** |
51
+ | llama-pro-ko-8b | 10B | <u>0.7878</u> | <u>0.4748</u> | 0.6631 | <u>0.8752</u> | <u>70.02</u> |
52
 
53
  **10shot**
54
 
55
+ | | # tokens | copa | HellaSwag | boolq | sentiNeg | mean |
56
+ | ------------------------------------------------------------ | :------: | :------: | :-------: | :---------: | :---------: | ------------ |
57
+ | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.78 | 0.47 | <u>0.68</u> | 0.87 | 70.12 |
58
+ | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.80** | 0.47 | **0.71** | 0.73 | 67.81 |
59
+ | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.79 | **0.48** | 0.67 | <u>0.94</u> | **71.82** |
60
+ | llama-pro-ko-8b | 10B | **0.80** | **0.48** | 0.60 | **0.97** | <u>71.12</u> |
61
+
62
+ ### English Evaluation
63
+
64
+ #### Open LLM Benchmark
65
+
66
+ | | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | AVG | diff |
67
+ | :----------------------------------------------------------- | :----------: | :----------: | :----------: | :----------: | :----------: | :----------: | :----------: |
68
+ | [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) | 53.07 | **78.59** | 46.87 | <u>38.76</u> | **74.03** | <u>58.26</u> | 0 |
69
+ | [TencentARC](https://huggingface.co/TencentARC/LLaMA-Pro-8B)/LLaMA-Pro-8B | **54.1** | <u>77.94</u> | **47.88** | **39.04** | <u>73.95</u> | **58.58** | **0.32** |
70
+ | [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 48.46 | 75.28 | 39.56 | 34.49 | 72.14 | 53.99 | -4.28 |
71
+ | [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 46.84 | 69.48 | 29.86 | 35.35 | 66.30 | 49.57 | -8.70 |
72
+ | llama-pro-ko-8b | <u>53.24</u> | <u>77.93</u> | <u>47.06</u> | 38.32 | 72.22 | 57.75 | <u>-0.51</u> |
73
 
74
 
75