Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,71 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
|
12 |
-
## Model
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ko
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- facebook
|
9 |
+
- meta
|
10 |
+
- pytorch
|
11 |
+
- llama
|
12 |
+
- llama-2
|
13 |
+
- llama-2-ko
|
14 |
+
- llama-pro-ko
|
15 |
|
16 |
+
---
|
17 |
|
18 |
|
19 |
|
20 |
+
## LLaMA-Pro-Ko-8B Model Card
|
21 |
|
22 |
### Model Description
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
|
26 |
+
LLaMA-Pro is an advanced iteration of the original LLaMA model, augmented with additional Transformer blocks. Unlike its predecessor, Llama-pro, which was specialized for programming and mathematics, Llama-Pro-Ko is tailored to the language domain, undergoing post-training for enhanced performance.
|
27 |
|
28 |
+
## Development and Training
|
29 |
|
30 |
+
The NLP & AI Lab at Korea University developed LLaMA-Pro-Ko, a model boasting 8 billion parameters. This model extends LLaMA2-7B by incorporating Korean tokens via vocabulary extension and was further refined by training on a Korean corpus of 10 billion tokens, exclusively without the inclusion of English data.
|
31 |
|
32 |
+
### Language Specialization and Transfer
|
33 |
|
34 |
+
While previous models like Llama-ko and Llama-2-ko experienced diminished English capabilities as they learned Korean, Llama-Pro's language transfer approach aims to bolster Korean language performance with minimal impact on its English proficiency.
|
35 |
|
36 |
+
### Bilingual Performance Evaluation
|
37 |
|
38 |
+
LLaMA-Pro-Ko's performance is evaluated on two fronts: its proficiency in English and its mastery of Korean, showcasing its capabilities as a bilingual model.
|
39 |
|
40 |
+
### KO - KoBEST
|
41 |
|
42 |
+
**5shot**
|
43 |
|
44 |
+
| | # token | copa | HellaSwag | boolq | sentiNeg | AVG |
|
45 |
+
| ------------------------------------------------------------ | :-----: | :-----------: | :-----------: | ------------- | :-----------: | :----------: |
|
46 |
+
| [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.7626 | 0.4668 | 0.4657 | 0.8295 | 63.11 |
|
47 |
+
| [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.7927** | 0.4657 | **0.6977** | 0.7611 | 67.93 |
|
48 |
+
| [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.7737 | **0.4831** | <u>0.6824</u> | **0.8991** | **70.96** |
|
49 |
+
| llama-pro-ko-8b | 10B | <u>0.7878</u> | <u>0.4748</u> | 0.6631 | <u>0.8752</u> | <u>70.02</u> |
|
50 |
|
51 |
+
**10shot**
|
52 |
|
53 |
+
| | # token | copa | HellaSwag | boolq | sentiNeg | mean |
|
54 |
+
| ------------------------------------------------------------ | :-----: | :------: | :-------: | :---------: | :---------: | ------------ |
|
55 |
+
| [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 20B | 0.78 | 0.47 | <u>0.68</u> | 0.87 | 70.12 |
|
56 |
+
| [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 40B | **0.80** | 0.47 | **0.71** | 0.73 | 67.81 |
|
57 |
+
| [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 15B | 0.79 | **0.48** | 0.67 | <u>0.94</u> | **71.82** |
|
58 |
+
| llama-pro-ko-8b | 10B | **0.80** | **0.48** | 0.60 | **0.97** | <u>71.12</u> |
|
59 |
|
60 |
+
### EN - Open LLM Benchmark
|
61 |
|
62 |
+
| | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | AVG | diff |
|
63 |
+
| :----------------------------------------------------------- | :------: | :----------: | :-------: | :----------: | :----------: | :----------: | :---: |
|
64 |
+
| [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) | 53.07 | **78.59** | 46.87 | <u>38.76</u> | **74.03** | <u>58.26</u> | 0 |
|
65 |
+
| [TencentARC](https://huggingface.co/TencentARC/LLaMA-Pro-8B)/LLaMA-Pro-8B | **54.1** | <u>77.94</u> | **47.88** | **39.04** | <u>73.95</u> | **58.58** | 0.32 |
|
66 |
+
| [beomi](https://huggingface.co/beomi/llama-2-ko-7b)/llama-2-ko-7b | 48.46 | 75.28 | 39.56 | 34.49 | 72.14 | 53.99 | -4.28 |
|
67 |
+
| [beomi](https://huggingface.co/beomi/open-llama-2-ko-7b)/open-llama-2-ko-7b | 46.84 | 69.48 | 29.86 | 35.35 | 66.30 | 49.57 | -8.70 |
|
68 |
+
| llama-pro-ko-8b | | | | | | | |
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|