File size: 1,475 Bytes
6ee92a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model: beomi/kcbert-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: kcbert-large-finetuned-nsmc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kcbert-large-finetuned-nsmc

This model is a fine-tuned version of [beomi/kcbert-large](https://huggingface.co/beomi/kcbert-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2576
- Accuracy: 0.9137
- F1: 0.9137

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.267         | 1.0   | 3750 | 0.2231          | 0.9106   | 0.9106 |
| 0.1427        | 2.0   | 7500 | 0.2576          | 0.9137   | 0.9137 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0