File size: 2,654 Bytes
7a675e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- turkish_ner
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: turkish-ner-mBERT-a
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: turkish_ner
      type: turkish_ner
      config: default
      split: train
      args: default
    metrics:
    - name: F1
      type: f1
      value: 0.5209740126867198
    - name: Precision
      type: precision
      value: 0.5447154471544715
    - name: Recall
      type: recall
      value: 0.4992156862745098
    - name: Accuracy
      type: accuracy
      value: 0.8769170049616599
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# turkish-ner-mBERT-a

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the turkish_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3741
- F1: 0.5210
- Precision: 0.5447
- Recall: 0.4992
- Accuracy: 0.8769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| No log        | 1.0   | 125  | 0.3508          | 0.4950 | 0.5369    | 0.4592 | 0.8669   |
| No log        | 2.0   | 250  | 0.3426          | 0.5253 | 0.5890    | 0.4740 | 0.8757   |
| No log        | 3.0   | 375  | 0.3746          | 0.5512 | 0.5718    | 0.5321 | 0.8785   |
| 0.2477        | 4.0   | 500  | 0.4057          | 0.5461 | 0.5302    | 0.5629 | 0.8722   |
| 0.2477        | 5.0   | 625  | 0.4334          | 0.5455 | 0.5393    | 0.5518 | 0.8734   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0