File size: 1,368 Bytes
57be487
 
 
 
 
 
 
 
 
aa93800
57be487
 
 
 
 
 
 
 
 
 
7d619b2
57be487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Dict, List, Any
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import base64
import torch

class EndpointHandler:
    def __init__(self, path=""):
        # load model and processor from path
        self.processor = AutoProcessor.from_pretrained(path)
        self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto", load_in_8bit=True).to("cuda")

    def __call__(self, inputs: Dict[str, Any]) -> Dict[str, str]:
        """
        Args:
            inputs:
                Dict of image and text inputs.
        """
        # process input
        inputs = data.pop("inputs", data)
        image = base64.b64decode(inputs["image"])
        inputs = processor(images=image, text=inputs["text"], return_tensors="pt").to("cuda", torch.float16)
        generated_ids = model.generate(
            **inputs,
            do_sample=decoding_method == "Nucleus sampling",
            temperature=1.0,
            length_penalty=1.0,
            repetition_penalty=1.5,
            max_length=30,
            min_length=1,
            num_beams=5,
            top_p=0.9,
        )
        result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        if output and output[-1] not in string.punctuation:
            output += "."


        return [{"generated_text": output}]