File size: 862 Bytes
8f655f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
import torch
import joblib

# Load the model and tokenizer
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")

# Load the label mapping
label_mapping = joblib.load("label_mapping.joblib")

def predict(text):
    # Tokenize the input text
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
    
    # Make prediction
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get the predicted class
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    
    # Map the predicted class to its label
    predicted_label = label_mapping[predicted_class]
    
    return predicted_label

# Test the function
print(predict("Your test text here"))