results / README.md
mekjr1's picture
mekjr1/longformer-ai-text-detector
4b2dd19 verified
metadata
library_name: transformers
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of allenai/longformer-base-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9265
  • Accuracy: 0.881
  • Precision: 0.8604
  • Recall: 0.9788
  • F1: 0.9158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3194 1.0 157 0.4800 0.81 0.7827 0.9864 0.8728
0.2475 2.0 314 0.3097 0.88 0.8670 0.9667 0.9142
0.1697 3.0 471 0.5044 0.859 0.8291 0.9909 0.9028
0.0833 4.0 628 0.3149 0.911 0.9243 0.9425 0.9333
0.0582 5.0 785 0.5629 0.885 0.8709 0.9697 0.9177
0.029 6.0 942 0.7728 0.873 0.8541 0.9743 0.9102
0.0186 7.0 1099 1.0292 0.865 0.8355 0.9909 0.9066
0.0007 8.0 1256 0.9823 0.875 0.8508 0.9834 0.9123
0.0211 9.0 1413 0.8580 0.89 0.8708 0.9788 0.9217
0.0086 10.0 1570 0.9265 0.881 0.8604 0.9788 0.9158

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1