|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.masking_utils import create_causal_mask |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
from transformers.utils.generic import check_model_inputs |
|
from .configuration_longcat_flash import LongcatFlashConfig |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class LongcatFlashRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LongcatFlashRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
class LongcatFlashRotaryEmbedding(nn.Module): |
|
def __init__(self, config: LongcatFlashConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class LongcatFlashMLP(nn.Module): |
|
def __init__(self, config, hidden_size=None, intermediate_size=None): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size |
|
self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size |
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
class LongcatFlashTopkRouter(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.moe_topk |
|
self.n_routed_experts = ( |
|
config.n_routed_experts |
|
if config.zero_expert_num is None |
|
else config.n_routed_experts + config.zero_expert_num |
|
) |
|
self.routed_scaling_factor = config.routed_scaling_factor |
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.router_bias = config.router_bias |
|
|
|
self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias) |
|
self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts))) |
|
|
|
@torch.no_grad() |
|
def get_topk_indices(self, scores): |
|
scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0) |
|
topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1] |
|
return topk_indices |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = hidden_states.view(-1, self.config.hidden_size) |
|
router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32)) |
|
scores = router_logits.softmax(dim=-1) |
|
topk_indices = self.get_topk_indices(scores) |
|
topk_weights = scores.gather(1, topk_indices) |
|
if self.norm_topk_prob: |
|
denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20 |
|
topk_weights /= denominator |
|
topk_weights = topk_weights * self.routed_scaling_factor |
|
return topk_indices, topk_weights |
|
|
|
|
|
class LongcatFlashMoE(nn.Module): |
|
""" |
|
moe module. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.experts = nn.ModuleList( |
|
[ |
|
LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size) |
|
for _ in range(config.n_routed_experts) |
|
] |
|
) |
|
self.router = LongcatFlashTopkRouter(config) |
|
self.zero_expert_num = config.zero_expert_num |
|
self.zero_expert_type = config.zero_expert_type |
|
|
|
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor): |
|
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype) |
|
total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num |
|
|
|
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts) |
|
expert_mask = expert_mask.permute(2, 0, 1) |
|
|
|
for expert_idx in range(total_experts): |
|
expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None |
|
mask = expert_mask[expert_idx] |
|
token_indices, weight_indices = torch.where(mask) |
|
|
|
if token_indices.numel() > 0: |
|
expert_weights = topk_weights[token_indices, weight_indices] |
|
expert_input = hidden_states[token_indices] |
|
|
|
if self.zero_expert_num is None or expert_idx < len(self.experts): |
|
expert_output = expert(expert_input) |
|
elif self.zero_expert_type == "identity": |
|
expert_output = expert_input |
|
else: |
|
raise ValueError("Unknown condition") |
|
|
|
weighted_output = expert_output * expert_weights.unsqueeze(-1) |
|
final_hidden_states.index_add_(0, token_indices, weighted_output) |
|
|
|
return final_hidden_states.type(hidden_states.dtype) |
|
|
|
def forward(self, hidden_states): |
|
orig_shape = hidden_states.shape |
|
topk_indices, topk_weights = self.router(hidden_states) |
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) |
|
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape) |
|
return hidden_states |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs: Unpack[TransformersKwargs], |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
if use_mla: |
|
b, h, s, d = q.shape |
|
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) |
|
|
|
b, h, s, d = k.shape |
|
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) |
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class LongcatFlashMLA(nn.Module): |
|
"""Modified from Deepseek MLA""" |
|
|
|
def __init__(self, config: LongcatFlashConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.attention_dropout = config.attention_dropout |
|
self.num_heads = config.num_attention_heads |
|
self.rope_theta = config.rope_theta |
|
self.q_lora_rank = config.q_lora_rank |
|
self.qk_rope_head_dim = config.qk_rope_head_dim |
|
self.kv_lora_rank = config.kv_lora_rank |
|
self.v_head_dim = config.v_head_dim |
|
self.qk_nope_head_dim = config.qk_nope_head_dim |
|
self.qk_head_dim = config.qk_head_dim |
|
|
|
self.is_causal = True |
|
if self.q_lora_rank is None: |
|
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False) |
|
else: |
|
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias) |
|
self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank) |
|
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) |
|
|
|
self.kv_a_proj_with_mqa = nn.Linear( |
|
config.hidden_size, |
|
self.kv_lora_rank + self.qk_rope_head_dim, |
|
bias=config.attention_bias, |
|
) |
|
self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank) |
|
self.kv_b_proj = nn.Linear( |
|
self.kv_lora_rank, |
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), |
|
bias=False, |
|
) |
|
|
|
self.o_proj = nn.Linear( |
|
self.num_heads * self.v_head_dim, |
|
config.hidden_size, |
|
bias=config.attention_bias, |
|
) |
|
|
|
if config.mla_scale_q_lora: |
|
self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5 |
|
if config.mla_scale_kv_lora: |
|
self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5 |
|
self.scaling = self.qk_head_dim ** (-0.5) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
batch_size, seq_length = hidden_states.shape[:-1] |
|
query_shape = (batch_size, seq_length, -1, self.qk_head_dim) |
|
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim) |
|
|
|
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2) |
|
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) |
|
|
|
|
|
if self.mla_scale_q_lora is not None: |
|
q_pass = q_pass * self.mla_scale_q_lora |
|
q_rot = q_rot * self.mla_scale_q_lora |
|
|
|
compressed_kv = self.kv_a_proj_with_mqa(hidden_states) |
|
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) |
|
k_pass = self.kv_a_layernorm(k_pass) |
|
|
|
|
|
if self.mla_scale_kv_lora is not None: |
|
k_pass = k_pass * self.mla_scale_kv_lora |
|
|
|
k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2) |
|
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) |
|
|
|
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim) |
|
|
|
cos, sin = position_embeddings |
|
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True) |
|
k_rot = k_rot.expand(*k_pass.shape[:-1], -1) |
|
|
|
query_states = torch.cat((q_pass, q_rot), dim=-1) |
|
key_states = torch.cat((k_pass, k_rot), dim=-1) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: |
|
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim]) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: |
|
attn_output = attn_output[:, :, :, : self.v_head_dim] |
|
|
|
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
|
|
def create_attention_block(class_name, *args, **kwargs): |
|
attention_mapping = {"MLA": LongcatFlashMLA} |
|
|
|
chosen_class = attention_mapping.get(class_name) |
|
if not chosen_class: |
|
raise ValueError(f"No class found for name: {class_name}") |
|
|
|
return chosen_class(*args, **kwargs) |
|
|
|
|
|
class LongcatFlashDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: LongcatFlashConfig, layer_idx: int): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.mlp = LongcatFlashMoE(config) |
|
|
|
self_attn = [] |
|
mlps = [] |
|
input_layernorm = [] |
|
post_attention_layernorm = [] |
|
for i in range(2): |
|
self_attn.append( |
|
create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i) |
|
) |
|
mlps.append(LongcatFlashMLP(config)) |
|
input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)) |
|
post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)) |
|
|
|
self.self_attn = nn.ModuleList(self_attn) |
|
self.mlps = nn.ModuleList(mlps) |
|
self.input_layernorm = nn.ModuleList(input_layernorm) |
|
self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
for i in range(2): |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm[i](hidden_states) |
|
|
|
hidden_states, _ = self.self_attn[i]( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm[i](hidden_states) |
|
|
|
if i == 0: |
|
shortcut_mlp_output = self.mlp(hidden_states) |
|
|
|
hidden_states = self.mlps[i](hidden_states) |
|
hidden_states = residual + hidden_states |
|
if i == 1: |
|
hidden_states = hidden_states + shortcut_mlp_output |
|
|
|
return hidden_states |
|
|
|
|
|
@auto_docstring |
|
class LongcatFlashPreTrainedModel(PreTrainedModel): |
|
config: LongcatFlashConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LongcatFlashDecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_can_compile_fullgraph = True |
|
_supports_attention_backend = True |
|
_can_record_outputs = { |
|
"hidden_states": LongcatFlashDecoderLayer, |
|
"attentions": LongcatFlashMLA, |
|
} |
|
|
|
|
|
@auto_docstring |
|
class LongcatFlashModel(LongcatFlashPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"] |
|
|
|
def __init__(self, config: LongcatFlashConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = LongcatFlashRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
@check_model_inputs |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
**kwargs: Unpack[TransformersKwargs], |
|
) -> BaseModelOutputWithPast: |
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position: torch.Tensor = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = create_causal_mask( |
|
config=self.config, |
|
input_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
past_key_values=past_key_values, |
|
position_ids=position_ids, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
hidden_states = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
|
|
@auto_docstring |
|
class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = LongcatFlashModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs: Unpack[TransformersKwargs], |
|
) -> CausalLMOutputWithPast: |
|
r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LongcatFlashForCausalLM |
|
|
|
>>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
__all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"] |
|
|