File size: 2,203 Bytes
984d3cb
 
6d467ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984d3cb
 
6d467ef
 
984d3cb
6d467ef
984d3cb
6d467ef
 
 
 
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
984d3cb
6d467ef
 
 
 
 
 
 
 
 
 
984d3cb
6d467ef
984d3cb
6d467ef
 
 
 
 
 
 
 
 
 
984d3cb
 
6d467ef
984d3cb
6d467ef
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/common_voice_18_0
metrics:
- wer
model-index:
- name: Whisper Medium New Train
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 18.0
      type: fsicoli/common_voice_18_0
    metrics:
    - name: Wer
      type: wer
      value: 2.2782892974889872
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium New Train

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 18.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0204
- Wer: 2.2783

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2733        | 0.4077 | 1000 | 0.2585          | 32.5924 |
| 0.1527        | 0.8153 | 2000 | 0.1246          | 16.7238 |
| 0.0655        | 1.2230 | 3000 | 0.0776          | 10.5668 |
| 0.0455        | 1.6307 | 4000 | 0.0514          | 6.7675  |
| 0.0162        | 2.0383 | 5000 | 0.0353          | 4.4772  |
| 0.0129        | 2.4460 | 6000 | 0.0274          | 3.4364  |
| 0.0117        | 2.8536 | 7000 | 0.0220          | 2.5110  |
| 0.0044        | 3.2613 | 8000 | 0.0204          | 2.2783  |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.1
- Datasets 3.0.0
- Tokenizers 0.19.1