File size: 2,203 Bytes
984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef 984d3cb 6d467ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/common_voice_18_0
metrics:
- wer
model-index:
- name: Whisper Medium New Train
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 18.0
type: fsicoli/common_voice_18_0
metrics:
- name: Wer
type: wer
value: 2.2782892974889872
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium New Train
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 18.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0204
- Wer: 2.2783
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2733 | 0.4077 | 1000 | 0.2585 | 32.5924 |
| 0.1527 | 0.8153 | 2000 | 0.1246 | 16.7238 |
| 0.0655 | 1.2230 | 3000 | 0.0776 | 10.5668 |
| 0.0455 | 1.6307 | 4000 | 0.0514 | 6.7675 |
| 0.0162 | 2.0383 | 5000 | 0.0353 | 4.4772 |
| 0.0129 | 2.4460 | 6000 | 0.0274 | 3.4364 |
| 0.0117 | 2.8536 | 7000 | 0.0220 | 2.5110 |
| 0.0044 | 3.2613 | 8000 | 0.0204 | 2.2783 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1
- Datasets 3.0.0
- Tokenizers 0.19.1 |