File size: 1,938 Bytes
4320eb9
c52ab5e
 
 
 
 
 
 
 
 
 
 
4320eb9
c52ab5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_distilbert_fa_zwnj_base_ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_distilbert_fa_zwnj_base_ner

This model is a fine-tuned version of [HooshvareLab/distilbert-fa-zwnj-base](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0655
- Precision: 0.7831
- Recall: 0.8436
- F1: 0.8122
- Accuracy: 0.9807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.332         | 1.0   | 1821 | 0.1963          | 0.3958    | 0.5123 | 0.4466 | 0.9382   |
| 0.1716        | 2.0   | 3642 | 0.1287          | 0.5640    | 0.6490 | 0.6035 | 0.9579   |
| 0.1037        | 3.0   | 5463 | 0.0911          | 0.6542    | 0.7514 | 0.6995 | 0.9697   |
| 0.0644        | 4.0   | 7284 | 0.0736          | 0.7380    | 0.8155 | 0.7749 | 0.9768   |
| 0.0408        | 5.0   | 9105 | 0.0655          | 0.7831    | 0.8436 | 0.8122 | 0.9807   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1