Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 7,484 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule

from mmseg.ops import resize
from ..builder import HEADS
from .decode_head import BaseDecodeHead

try:
    from mmcv.ops import PSAMask
except ModuleNotFoundError:
    PSAMask = None


@HEADS.register_module()
class PSAHead(BaseDecodeHead):
    """Point-wise Spatial Attention Network for Scene Parsing.

    This head is the implementation of `PSANet
    <https://hszhao.github.io/papers/eccv18_psanet.pdf>`_.

    Args:
        mask_size (tuple[int]): The PSA mask size. It usually equals input
            size.
        psa_type (str): The type of psa module. Options are 'collect',
            'distribute', 'bi-direction'. Default: 'bi-direction'
        compact (bool): Whether use compact map for 'collect' mode.
            Default: True.
        shrink_factor (int): The downsample factors of psa mask. Default: 2.
        normalization_factor (float): The normalize factor of attention.
        psa_softmax (bool): Whether use softmax for attention.
    """

    def __init__(self,
                 mask_size,
                 psa_type='bi-direction',
                 compact=False,
                 shrink_factor=2,
                 normalization_factor=1.0,
                 psa_softmax=True,
                 **kwargs):
        if PSAMask is None:
            raise RuntimeError('Please install mmcv-full for PSAMask ops')
        super(PSAHead, self).__init__(**kwargs)
        assert psa_type in ['collect', 'distribute', 'bi-direction']
        self.psa_type = psa_type
        self.compact = compact
        self.shrink_factor = shrink_factor
        self.mask_size = mask_size
        mask_h, mask_w = mask_size
        self.psa_softmax = psa_softmax
        if normalization_factor is None:
            normalization_factor = mask_h * mask_w
        self.normalization_factor = normalization_factor

        self.reduce = ConvModule(
            self.in_channels,
            self.channels,
            kernel_size=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.attention = nn.Sequential(
            ConvModule(
                self.channels,
                self.channels,
                kernel_size=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg),
            nn.Conv2d(
                self.channels, mask_h * mask_w, kernel_size=1, bias=False))
        if psa_type == 'bi-direction':
            self.reduce_p = ConvModule(
                self.in_channels,
                self.channels,
                kernel_size=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            self.attention_p = nn.Sequential(
                ConvModule(
                    self.channels,
                    self.channels,
                    kernel_size=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg),
                nn.Conv2d(
                    self.channels, mask_h * mask_w, kernel_size=1, bias=False))
            self.psamask_collect = PSAMask('collect', mask_size)
            self.psamask_distribute = PSAMask('distribute', mask_size)
        else:
            self.psamask = PSAMask(psa_type, mask_size)
        self.proj = ConvModule(
            self.channels * (2 if psa_type == 'bi-direction' else 1),
            self.in_channels,
            kernel_size=1,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.bottleneck = ConvModule(
            self.in_channels * 2,
            self.channels,
            kernel_size=3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def forward(self, inputs):
        """Forward function."""
        x = self._transform_inputs(inputs)
        identity = x
        align_corners = self.align_corners
        if self.psa_type in ['collect', 'distribute']:
            out = self.reduce(x)
            n, c, h, w = out.size()
            if self.shrink_factor != 1:
                if h % self.shrink_factor and w % self.shrink_factor:
                    h = (h - 1) // self.shrink_factor + 1
                    w = (w - 1) // self.shrink_factor + 1
                    align_corners = True
                else:
                    h = h // self.shrink_factor
                    w = w // self.shrink_factor
                    align_corners = False
                out = resize(
                    out,
                    size=(h, w),
                    mode='bilinear',
                    align_corners=align_corners)
            y = self.attention(out)
            if self.compact:
                if self.psa_type == 'collect':
                    y = y.view(n, h * w,
                               h * w).transpose(1, 2).view(n, h * w, h, w)
            else:
                y = self.psamask(y)
            if self.psa_softmax:
                y = F.softmax(y, dim=1)
            out = torch.bmm(
                out.view(n, c, h * w), y.view(n, h * w, h * w)).view(
                    n, c, h, w) * (1.0 / self.normalization_factor)
        else:
            x_col = self.reduce(x)
            x_dis = self.reduce_p(x)
            n, c, h, w = x_col.size()
            if self.shrink_factor != 1:
                if h % self.shrink_factor and w % self.shrink_factor:
                    h = (h - 1) // self.shrink_factor + 1
                    w = (w - 1) // self.shrink_factor + 1
                    align_corners = True
                else:
                    h = h // self.shrink_factor
                    w = w // self.shrink_factor
                    align_corners = False
                x_col = resize(
                    x_col,
                    size=(h, w),
                    mode='bilinear',
                    align_corners=align_corners)
                x_dis = resize(
                    x_dis,
                    size=(h, w),
                    mode='bilinear',
                    align_corners=align_corners)
            y_col = self.attention(x_col)
            y_dis = self.attention_p(x_dis)
            if self.compact:
                y_dis = y_dis.view(n, h * w,
                                   h * w).transpose(1, 2).view(n, h * w, h, w)
            else:
                y_col = self.psamask_collect(y_col)
                y_dis = self.psamask_distribute(y_dis)
            if self.psa_softmax:
                y_col = F.softmax(y_col, dim=1)
                y_dis = F.softmax(y_dis, dim=1)
            x_col = torch.bmm(
                x_col.view(n, c, h * w), y_col.view(n, h * w, h * w)).view(
                    n, c, h, w) * (1.0 / self.normalization_factor)
            x_dis = torch.bmm(
                x_dis.view(n, c, h * w), y_dis.view(n, h * w, h * w)).view(
                    n, c, h, w) * (1.0 / self.normalization_factor)
            out = torch.cat([x_col, x_dis], 1)
        out = self.proj(out)
        out = resize(
            out,
            size=identity.shape[2:],
            mode='bilinear',
            align_corners=align_corners)
        out = self.bottleneck(torch.cat((identity, out), dim=1))
        out = self.cls_seg(out)
        return out