Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 4,352 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import math
import logging

_logger = logging.getLogger(__name__)

def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True, pos_embed_interp=False, num_patches=576, align_corners=False):
    if cfg is None:
        cfg = getattr(model, 'default_cfg')
    if cfg is None or 'url' not in cfg or not cfg['url']:
        _logger.warning("Pretrained model URL is invalid, using random initialization.")
        return

    if 'pretrained_finetune' in cfg and cfg['pretrained_finetune']:
        state_dict = torch.load(cfg['pretrained_finetune'])
        print('load pre-trained weight from ' + cfg['pretrained_finetune'])
    else:
        state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu')
        print('load pre-trained weight from imagenet21k')


    if filter_fn is not None:
        state_dict = filter_fn(state_dict)

    if in_chans == 1:
        conv1_name = cfg['first_conv']
        _logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
        conv1_weight = state_dict[conv1_name + '.weight']
        # Some weights are in torch.half, ensure it's float for sum on CPU
        conv1_type = conv1_weight.dtype
        conv1_weight = conv1_weight.float()
        O, I, J, K = conv1_weight.shape
        if I > 3:
            assert conv1_weight.shape[1] % 3 == 0
            # For models with space2depth stems
            conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
            conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
        else:
            conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
        conv1_weight = conv1_weight.to(conv1_type)
        state_dict[conv1_name + '.weight'] = conv1_weight
    elif in_chans != 3:
        conv1_name = cfg['first_conv']
        conv1_weight = state_dict[conv1_name + '.weight']
        conv1_type = conv1_weight.dtype
        conv1_weight = conv1_weight.float()
        O, I, J, K = conv1_weight.shape
        if I == 3:
            _logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name)
            del state_dict[conv1_name + '.weight']
            strict = False
        else:
            # NOTE this strategy should be better than random init, but there could be other combinations of
            # the original RGB input layer weights that'd work better for specific cases.
            _logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name)
            repeat = int(math.ceil(in_chans / 3))
            conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
            conv1_weight *= (3 / float(in_chans))
            conv1_weight = conv1_weight.to(conv1_type)
            state_dict[conv1_name + '.weight'] = conv1_weight

    classifier_name = cfg['classifier']
    if num_classes == 1000 and cfg['num_classes'] == 1001:
        # special case for imagenet trained models with extra background class in pretrained weights
        classifier_weight = state_dict[classifier_name + '.weight']
        state_dict[classifier_name + '.weight'] = classifier_weight[1:]
        classifier_bias = state_dict[classifier_name + '.bias']
        state_dict[classifier_name + '.bias'] = classifier_bias[1:]
    elif num_classes != cfg['num_classes']:
        # completely discard fully connected for all other differences between pretrained and created model
        del state_dict[classifier_name + '.weight']
        del state_dict[classifier_name + '.bias']
        strict = False


    if pos_embed_interp:
        pos_embed_weight = state_dict['pos_embed'][:,1:]
        pos_embed_weight = pos_embed_weight.transpose(1,2)
        n, c, hw = pos_embed_weight.shape
        h = w = int(math.sqrt(hw))
        pos_embed_weight = pos_embed_weight.view(n,c,h,w)

        pos_embed_weight = F.interpolate(pos_embed_weight, size=int(math.sqrt(num_patches)), mode='bilinear', align_corners=align_corners)
        pos_embed_weight = pos_embed_weight.view(n,c,-1).transpose(1,2)

        cls_token_weight = state_dict['pos_embed'][:,0].unsqueeze(1)

        state_dict['pos_embed'] = torch.cat((cls_token_weight, pos_embed_weight), dim=1)

    model.load_state_dict(state_dict, strict=strict)