Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 10,303 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging

import mmcv
import torch.nn as nn
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from mmcv.cnn.bricks import Conv2dAdaptivePadding
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES
from ..utils import InvertedResidualV3 as InvertedResidual


@BACKBONES.register_module()
class MobileNetV3(nn.Module):
    """MobileNetV3 backbone.

    This backbone is the improved implementation of `Searching for MobileNetV3
    <https://ieeexplore.ieee.org/document/9008835>`_.

    Args:
        arch (str): Architechture of mobilnetv3, from {'small', 'large'}.
            Default: 'small'.
        conv_cfg (dict): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        out_indices (tuple[int]): Output from which layer.
            Default: (0, 1, 12).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defualt: -1, which means not freezing any parameters.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save
            some memory while slowing down the training speed.
            Defualt: False.
    """
    # Parameters to build each block:
    #     [kernel size, mid channels, out channels, with_se, act type, stride]
    arch_settings = {
        'small': [[3, 16, 16, True, 'ReLU', 2],  # block0 layer1 os=4
                  [3, 72, 24, False, 'ReLU', 2],  # block1 layer2 os=8
                  [3, 88, 24, False, 'ReLU', 1],
                  [5, 96, 40, True, 'HSwish', 2],  # block2 layer4 os=16
                  [5, 240, 40, True, 'HSwish', 1],
                  [5, 240, 40, True, 'HSwish', 1],
                  [5, 120, 48, True, 'HSwish', 1],  # block3 layer7 os=16
                  [5, 144, 48, True, 'HSwish', 1],
                  [5, 288, 96, True, 'HSwish', 2],  # block4 layer9 os=32
                  [5, 576, 96, True, 'HSwish', 1],
                  [5, 576, 96, True, 'HSwish', 1]],
        'large': [[3, 16, 16, False, 'ReLU', 1],  # block0 layer1 os=2
                  [3, 64, 24, False, 'ReLU', 2],  # block1 layer2 os=4
                  [3, 72, 24, False, 'ReLU', 1],
                  [5, 72, 40, True, 'ReLU', 2],  # block2 layer4 os=8
                  [5, 120, 40, True, 'ReLU', 1],
                  [5, 120, 40, True, 'ReLU', 1],
                  [3, 240, 80, False, 'HSwish', 2],  # block3 layer7 os=16
                  [3, 200, 80, False, 'HSwish', 1],
                  [3, 184, 80, False, 'HSwish', 1],
                  [3, 184, 80, False, 'HSwish', 1],
                  [3, 480, 112, True, 'HSwish', 1],  # block4 layer11 os=16
                  [3, 672, 112, True, 'HSwish', 1],
                  [5, 672, 160, True, 'HSwish', 2],  # block5 layer13 os=32
                  [5, 960, 160, True, 'HSwish', 1],
                  [5, 960, 160, True, 'HSwish', 1]]
    }  # yapf: disable

    def __init__(self,
                 arch='small',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 out_indices=(0, 1, 12),
                 frozen_stages=-1,
                 reduction_factor=1,
                 norm_eval=False,
                 with_cp=False):
        super(MobileNetV3, self).__init__()
        assert arch in self.arch_settings
        assert isinstance(reduction_factor, int) and reduction_factor > 0
        assert mmcv.is_tuple_of(out_indices, int)
        for index in out_indices:
            if index not in range(0, len(self.arch_settings[arch]) + 2):
                raise ValueError(
                    'the item in out_indices must in '
                    f'range(0, {len(self.arch_settings[arch])+2}). '
                    f'But received {index}')

        if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2):
            raise ValueError('frozen_stages must be in range(-1, '
                             f'{len(self.arch_settings[arch])+2}). '
                             f'But received {frozen_stages}')
        self.arch = arch
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.reduction_factor = reduction_factor
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.layers = self._make_layer()

    def _make_layer(self):
        layers = []

        # build the first layer (layer0)
        in_channels = 16
        layer = ConvModule(
            in_channels=3,
            out_channels=in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            conv_cfg=dict(type='Conv2dAdaptivePadding'),
            norm_cfg=self.norm_cfg,
            act_cfg=dict(type='HSwish'))
        self.add_module('layer0', layer)
        layers.append('layer0')

        layer_setting = self.arch_settings[self.arch]
        for i, params in enumerate(layer_setting):
            (kernel_size, mid_channels, out_channels, with_se, act,
             stride) = params

            if self.arch == 'large' and i >= 12 or self.arch == 'small' and \
                    i >= 8:
                mid_channels = mid_channels // self.reduction_factor
                out_channels = out_channels // self.reduction_factor

            if with_se:
                se_cfg = dict(
                    channels=mid_channels,
                    ratio=4,
                    act_cfg=(dict(type='ReLU'),
                             dict(type='HSigmoid', bias=3.0, divisor=6.0)))
            else:
                se_cfg = None

            layer = InvertedResidual(
                in_channels=in_channels,
                out_channels=out_channels,
                mid_channels=mid_channels,
                kernel_size=kernel_size,
                stride=stride,
                se_cfg=se_cfg,
                with_expand_conv=(in_channels != mid_channels),
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=dict(type=act),
                with_cp=self.with_cp)
            in_channels = out_channels
            layer_name = 'layer{}'.format(i + 1)
            self.add_module(layer_name, layer)
            layers.append(layer_name)

        # build the last layer
        # block5 layer12 os=32 for small model
        # block6 layer16 os=32 for large model
        layer = ConvModule(
            in_channels=in_channels,
            out_channels=576 if self.arch == 'small' else 960,
            kernel_size=1,
            stride=1,
            dilation=4,
            padding=0,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=dict(type='HSwish'))
        layer_name = 'layer{}'.format(len(layer_setting) + 1)
        self.add_module(layer_name, layer)
        layers.append(layer_name)

        # next, convert backbone MobileNetV3 to a semantic segmentation version
        if self.arch == 'small':
            self.layer4.depthwise_conv.conv.stride = (1, 1)
            self.layer9.depthwise_conv.conv.stride = (1, 1)
            for i in range(4, len(layers)):
                layer = getattr(self, layers[i])
                if isinstance(layer, InvertedResidual):
                    modified_module = layer.depthwise_conv.conv
                else:
                    modified_module = layer.conv

                if i < 9:
                    modified_module.dilation = (2, 2)
                    pad = 2
                else:
                    modified_module.dilation = (4, 4)
                    pad = 4

                if not isinstance(modified_module, Conv2dAdaptivePadding):
                    # Adjust padding
                    pad *= (modified_module.kernel_size[0] - 1) // 2
                    modified_module.padding = (pad, pad)
        else:
            self.layer7.depthwise_conv.conv.stride = (1, 1)
            self.layer13.depthwise_conv.conv.stride = (1, 1)
            for i in range(7, len(layers)):
                layer = getattr(self, layers[i])
                if isinstance(layer, InvertedResidual):
                    modified_module = layer.depthwise_conv.conv
                else:
                    modified_module = layer.conv

                if i < 13:
                    modified_module.dilation = (2, 2)
                    pad = 2
                else:
                    modified_module.dilation = (4, 4)
                    pad = 4

                if not isinstance(modified_module, Conv2dAdaptivePadding):
                    # Adjust padding
                    pad *= (modified_module.kernel_size[0] - 1) // 2
                    modified_module.padding = (pad, pad)

        return layers

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        outs = []
        for i, layer_name in enumerate(self.layers):
            layer = getattr(self, layer_name)
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)
        return outs

    def _freeze_stages(self):
        for i in range(self.frozen_stages + 1):
            layer = getattr(self, f'layer{i}')
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(MobileNetV3, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()