Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 2,109 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import mmcv
import torch.nn as nn
from mmcv.cnn import ConvModule

from .make_divisible import make_divisible


class SELayer(nn.Module):
    """Squeeze-and-Excitation Module.

    Args:
        channels (int): The input (and output) channels of the SE layer.
        ratio (int): Squeeze ratio in SELayer, the intermediate channel will be
            ``int(channels/ratio)``. Default: 16.
        conv_cfg (None or dict): Config dict for convolution layer.
            Default: None, which means using conv2d.
        act_cfg (dict or Sequence[dict]): Config dict for activation layer.
            If act_cfg is a dict, two activation layers will be configurated
            by this dict. If act_cfg is a sequence of dicts, the first
            activation layer will be configurated by the first dict and the
            second activation layer will be configurated by the second dict.
            Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0,
            divisor=6.0)).
    """

    def __init__(self,
                 channels,
                 ratio=16,
                 conv_cfg=None,
                 act_cfg=(dict(type='ReLU'),
                          dict(type='HSigmoid', bias=3.0, divisor=6.0))):
        super(SELayer, self).__init__()
        if isinstance(act_cfg, dict):
            act_cfg = (act_cfg, act_cfg)
        assert len(act_cfg) == 2
        assert mmcv.is_tuple_of(act_cfg, dict)
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)
        self.conv1 = ConvModule(
            in_channels=channels,
            out_channels=make_divisible(channels // ratio, 8),
            kernel_size=1,
            stride=1,
            conv_cfg=conv_cfg,
            act_cfg=act_cfg[0])
        self.conv2 = ConvModule(
            in_channels=make_divisible(channels // ratio, 8),
            out_channels=channels,
            kernel_size=1,
            stride=1,
            conv_cfg=conv_cfg,
            act_cfg=act_cfg[1])

    def forward(self, x):
        out = self.global_avgpool(x)
        out = self.conv1(out)
        out = self.conv2(out)
        return x * out