File size: 13,412 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math

from .helpers import load_pretrained
from .layers import DropPath, to_2tuple, trunc_normal_

from ..builder import BACKBONES

from mmcv.cnn import build_norm_layer


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
        'first_conv': '', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # patch models
    'vit_small_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
    ),
    'vit_base_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
        #pretrained_finetune='pretrain/VIT_base_224_ReLeM.pth'
    ),
    'vit_base_patch16_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_base_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_large_patch16_224': _cfg(),
    'vit_large_patch16_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0,
    ),
    'vit_large_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_huge_patch16_224': _cfg(),
    'vit_huge_patch32_384': _cfg(input_size=(3, 384, 384)),
    # hybrid models
    'vit_small_resnet26d_224': _cfg(),
    'vit_small_resnet50d_s3_224': _cfg(),
    'vit_base_resnet26d_224': _cfg(),
    'vit_base_resnet50d_224': _cfg(),
    'deit_base_distilled_path16_384': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, checkpoint=True,
    ),
}


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # x = F.interpolate(x, size=2*x.shape[-1], mode='bilinear', align_corners=True)
        x = self.proj(x)
        return x


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        self.img_size = img_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
                # map for all networks, the feature metadata has reliable channel and stride info, but using
                # stride to calc feature dim requires info about padding of each stage that isn't captured.
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            feature_dim = self.backbone.feature_info.channels()[-1]
        self.num_patches = feature_size[0] * feature_size[1]
        self.proj = nn.Linear(feature_dim, embed_dim)

    def forward(self, x):
        x = self.backbone(x)[-1]
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


@BACKBONES.register_module()
class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, model_name='vit_large_patch16_384', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24,
                 num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0.,
                 drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, 
                 pos_embed_interp=False, random_init=False, align_corners=False, pretrain_weights=None, **kwargs):
        super(VisionTransformer, self).__init__(**kwargs)
        self.model_name = model_name
        self.img_size = img_size
        self.patch_size = patch_size
        self.in_chans = in_chans
        self.embed_dim = embed_dim
        self.depth = depth
        self.num_heads = num_heads
        self.num_classes = num_classes
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.qk_scale = qk_scale
        self.drop_rate = drop_rate
        self.attn_drop_rate = attn_drop_rate
        self.drop_path_rate = drop_path_rate
        self.hybrid_backbone = hybrid_backbone
        self.norm_layer = norm_layer
        self.norm_cfg = norm_cfg
        self.pos_embed_interp = pos_embed_interp
        self.random_init = random_init
        self.align_corners = align_corners
        self.pretrain_weights = pretrain_weights

        self.num_stages = self.depth
        self.out_indices= tuple(range(self.num_stages))

        if self.hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
        else:
            self.patch_embed = PatchEmbed(
                img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
        self.num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.embed_dim))
        self.pos_drop = nn.Dropout(p=self.drop_rate)

        dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
                drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer)
            for i in range(self.depth)])

        # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
        #self.repr = nn.Linear(embed_dim, representation_size)
        #self.repr_act = nn.Tanh()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        # self.apply(self._init_weights)

    def init_weights(self, pretrained=None):
        # nn.init.normal_(self.pos_embed, std=0.02)
        # nn.init.zeros_(self.cls_token)
        
        for m in self.modules():
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        if self.random_init == False:
            self.default_cfg = default_cfgs[self.model_name]

            if not self.pretrain_weights == None:
                self.default_cfg['pretrained_finetune'] = self.pretrain_weights

            if self.model_name in ['vit_small_patch16_224', 'vit_base_patch16_224']:
                load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners, filter_fn=self._conv_filter)
            else:
                load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners)
        else:
            print('Initialize weight randomly')

    @property
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def _conv_filter(self, state_dict, patch_size=16):
        """ convert patch embedding weight from manual patchify + linear proj to conv"""
        out_dict = {}
        for k, v in state_dict.items():
            if 'patch_embed.proj.weight' in k:
                v = v.reshape((v.shape[0], 3, patch_size, patch_size))
            out_dict[k] = v
        return out_dict

    def to_2D(self, x):
        n, hw, c = x.shape
        h=w = int(math.sqrt(hw))
        x = x.transpose(1,2).reshape(n, c, h, w)
        return x

    def to_1D(self, x):
        n, c, h, w = x.shape
        x = x.reshape(n,c,-1).transpose(1,2)
        return x

    def forward(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)
 
        x = x.flatten(2).transpose(1, 2)
        
        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)
              
        outs = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i in self.out_indices:
                outs.append(x)
        return tuple(outs)