Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,991 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import gzip
import os
import os.path as osp
import tarfile
import tempfile

import mmcv

STARE_LEN = 20
TRAINING_LEN = 10


def un_gz(src, dst):
    g_file = gzip.GzipFile(src)
    with open(dst, 'wb+') as f:
        f.write(g_file.read())
    g_file.close()


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert STARE dataset to mmsegmentation format')
    parser.add_argument('image_path', help='the path of stare-images.tar')
    parser.add_argument('labels_ah', help='the path of labels-ah.tar')
    parser.add_argument('labels_vk', help='the path of labels-vk.tar')
    parser.add_argument('--tmp_dir', help='path of the temporary directory')
    parser.add_argument('-o', '--out_dir', help='output path')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    image_path = args.image_path
    labels_ah = args.labels_ah
    labels_vk = args.labels_vk
    if args.out_dir is None:
        out_dir = osp.join('data', 'STARE')
    else:
        out_dir = args.out_dir

    print('Making directories...')
    mmcv.mkdir_or_exist(out_dir)
    mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
    mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
    mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))

    with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))

        print('Extracting stare-images.tar...')
        with tarfile.open(image_path) as f:
            f.extractall(osp.join(tmp_dir, 'gz'))

        for filename in os.listdir(osp.join(tmp_dir, 'gz')):
            un_gz(
                osp.join(tmp_dir, 'gz', filename),
                osp.join(tmp_dir, 'files',
                         osp.splitext(filename)[0]))

        now_dir = osp.join(tmp_dir, 'files')

        assert len(os.listdir(now_dir)) == STARE_LEN, \
            'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)

        for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
            img = mmcv.imread(osp.join(now_dir, filename))
            mmcv.imwrite(
                img,
                osp.join(out_dir, 'images', 'training',
                         osp.splitext(filename)[0] + '.png'))

        for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
            img = mmcv.imread(osp.join(now_dir, filename))
            mmcv.imwrite(
                img,
                osp.join(out_dir, 'images', 'validation',
                         osp.splitext(filename)[0] + '.png'))

        print('Removing the temporary files...')

    with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))

        print('Extracting labels-ah.tar...')
        with tarfile.open(labels_ah) as f:
            f.extractall(osp.join(tmp_dir, 'gz'))

        for filename in os.listdir(osp.join(tmp_dir, 'gz')):
            un_gz(
                osp.join(tmp_dir, 'gz', filename),
                osp.join(tmp_dir, 'files',
                         osp.splitext(filename)[0]))

        now_dir = osp.join(tmp_dir, 'files')

        assert len(os.listdir(now_dir)) == STARE_LEN, \
            'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)

        for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
            img = mmcv.imread(osp.join(now_dir, filename))
            # The annotation img should be divided by 128, because some of
            # the annotation imgs are not standard. We should set a threshold
            # to convert the nonstandard annotation imgs. The value divided by
            # 128 equivalent to '1 if value >= 128 else 0'
            mmcv.imwrite(
                img[:, :, 0] // 128,
                osp.join(out_dir, 'annotations', 'training',
                         osp.splitext(filename)[0] + '.png'))

        for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
            img = mmcv.imread(osp.join(now_dir, filename))
            mmcv.imwrite(
                img[:, :, 0] // 128,
                osp.join(out_dir, 'annotations', 'validation',
                         osp.splitext(filename)[0] + '.png'))

        print('Removing the temporary files...')

    with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
        mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))

        print('Extracting labels-vk.tar...')
        with tarfile.open(labels_vk) as f:
            f.extractall(osp.join(tmp_dir, 'gz'))

        for filename in os.listdir(osp.join(tmp_dir, 'gz')):
            un_gz(
                osp.join(tmp_dir, 'gz', filename),
                osp.join(tmp_dir, 'files',
                         osp.splitext(filename)[0]))

        now_dir = osp.join(tmp_dir, 'files')

        assert len(os.listdir(now_dir)) == STARE_LEN, \
            'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)

        for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
            img = mmcv.imread(osp.join(now_dir, filename))
            mmcv.imwrite(
                img[:, :, 0] // 128,
                osp.join(out_dir, 'annotations', 'training',
                         osp.splitext(filename)[0] + '.png'))

        for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
            img = mmcv.imread(osp.join(now_dir, filename))
            mmcv.imwrite(
                img[:, :, 0] // 128,
                osp.join(out_dir, 'annotations', 'validation',
                         osp.splitext(filename)[0] + '.png'))

        print('Removing the temporary files...')

    print('Done!')


if __name__ == '__main__':
    main()