Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 6,019 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import glob
import os
from os.path import dirname, exists, isdir, join, relpath

from mmcv import Config
from torch import nn

from mmseg.models import build_segmentor


def _get_config_directory():
    """Find the predefined segmentor config directory."""
    try:
        # Assume we are running in the source mmsegmentation repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmseg
        repo_dpath = dirname(dirname(mmseg.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def test_config_build_segmentor():
    """Test that all segmentation models defined in the configs can be
    initialized."""
    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    config_fpaths = []
    # one config each sub folder
    for sub_folder in os.listdir(config_dpath):
        if isdir(sub_folder):
            config_fpaths.append(
                list(glob.glob(join(config_dpath, sub_folder, '*.py')))[0])
    config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
    config_names = [relpath(p, config_dpath) for p in config_fpaths]

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        config_mod.model
        print('Building segmentor, config_fpath = {!r}'.format(config_fpath))

        # Remove pretrained keys to allow for testing in an offline environment
        if 'pretrained' in config_mod.model:
            config_mod.model['pretrained'] = None

        print('building {}'.format(config_fname))
        segmentor = build_segmentor(config_mod.model)
        assert segmentor is not None

        head_config = config_mod.model['decode_head']
        _check_decode_head(head_config, segmentor.decode_head)


def test_config_data_pipeline():
    """Test whether the data pipeline is valid and can process corner cases.

    CommandLine:
        xdoctest -m tests/test_config.py test_config_build_data_pipeline
    """
    from mmcv import Config
    from mmseg.datasets.pipelines import Compose
    import numpy as np

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    import glob
    config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
    config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
    config_names = [relpath(p, config_dpath) for p in config_fpaths]

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        print(
            'Building data pipeline, config_fpath = {!r}'.format(config_fpath))
        config_mod = Config.fromfile(config_fpath)

        # remove loading pipeline
        load_img_pipeline = config_mod.train_pipeline.pop(0)
        to_float32 = load_img_pipeline.get('to_float32', False)
        config_mod.train_pipeline.pop(0)
        config_mod.test_pipeline.pop(0)

        train_pipeline = Compose(config_mod.train_pipeline)
        test_pipeline = Compose(config_mod.test_pipeline)

        img = np.random.randint(0, 255, size=(1024, 2048, 3), dtype=np.uint8)
        if to_float32:
            img = img.astype(np.float32)
        seg = np.random.randint(0, 255, size=(1024, 2048, 1), dtype=np.uint8)

        results = dict(
            filename='test_img.png',
            ori_filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
            gt_semantic_seg=seg)
        results['seg_fields'] = ['gt_semantic_seg']

        print('Test training data pipeline: \n{!r}'.format(train_pipeline))
        output_results = train_pipeline(results)
        assert output_results is not None

        results = dict(
            filename='test_img.png',
            ori_filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
        )
        print('Test testing data pipeline: \n{!r}'.format(test_pipeline))
        output_results = test_pipeline(results)
        assert output_results is not None


def _check_decode_head(decode_head_cfg, decode_head):
    if isinstance(decode_head_cfg, list):
        assert isinstance(decode_head, nn.ModuleList)
        assert len(decode_head_cfg) == len(decode_head)
        num_heads = len(decode_head)
        for i in range(num_heads):
            _check_decode_head(decode_head_cfg[i], decode_head[i])
        return
    # check consistency between head_config and roi_head
    assert decode_head_cfg['type'] == decode_head.__class__.__name__

    assert decode_head_cfg['type'] == decode_head.__class__.__name__

    in_channels = decode_head_cfg.in_channels
    input_transform = decode_head.input_transform
    assert input_transform in ['resize_concat', 'multiple_select', None]
    if input_transform is not None:
        assert isinstance(in_channels, (list, tuple))
        assert isinstance(decode_head.in_index, (list, tuple))
        assert len(in_channels) == len(decode_head.in_index)
    elif input_transform == 'resize_concat':
        assert sum(in_channels) == decode_head.in_channels
    else:
        assert isinstance(in_channels, int)
        assert in_channels == decode_head.in_channels
        assert isinstance(decode_head.in_index, int)

    if decode_head_cfg['type'] == 'PointHead':
        assert decode_head_cfg.channels+decode_head_cfg.num_classes == \
               decode_head.fc_seg.in_channels
        assert decode_head.fc_seg.out_channels == decode_head_cfg.num_classes
    else:
        assert decode_head_cfg.channels == decode_head.conv_seg.in_channels
        assert decode_head.conv_seg.out_channels == decode_head_cfg.num_classes