File size: 30,974 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
import mmcv
import numpy as np
from mmcv.utils import deprecated_api_warning, is_tuple_of
from numpy import random
from ..builder import PIPELINES
@PIPELINES.register_module()
class Resize(object):
"""Resize images & seg.
This transform resizes the input image to some scale. If the input dict
contains the key "scale", then the scale in the input dict is used,
otherwise the specified scale in the init method is used.
``img_scale`` can be Nong, a tuple (single-scale) or a list of tuple
(multi-scale). There are 4 multiscale modes:
- ``ratio_range is not None``:
1. When img_scale is None, img_scale is the shape of image in results
(img_scale = results['img'].shape[:2]) and the image is resized based
on the original size. (mode 1)
2. When img_scale is a tuple (single-scale), randomly sample a ratio from
the ratio range and multiply it with the image scale. (mode 2)
- ``ratio_range is None and multiscale_mode == "range"``: randomly sample a
scale from the a range. (mode 3)
- ``ratio_range is None and multiscale_mode == "value"``: randomly sample a
scale from multiple scales. (mode 4)
Args:
img_scale (tuple or list[tuple]): Images scales for resizing.
multiscale_mode (str): Either "range" or "value".
ratio_range (tuple[float]): (min_ratio, max_ratio)
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image.
"""
def __init__(self,
img_scale=None,
multiscale_mode='range',
ratio_range=None,
keep_ratio=True):
if img_scale is None:
self.img_scale = None
else:
if isinstance(img_scale, list):
self.img_scale = img_scale
else:
self.img_scale = [img_scale]
assert mmcv.is_list_of(self.img_scale, tuple)
if ratio_range is not None:
# mode 1: given img_scale=None and a range of image ratio
# mode 2: given a scale and a range of image ratio
assert self.img_scale is None or len(self.img_scale) == 1
else:
# mode 3 and 4: given multiple scales or a range of scales
assert multiscale_mode in ['value', 'range']
self.multiscale_mode = multiscale_mode
self.ratio_range = ratio_range
self.keep_ratio = keep_ratio
@staticmethod
def random_select(img_scales):
"""Randomly select an img_scale from given candidates.
Args:
img_scales (list[tuple]): Images scales for selection.
Returns:
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``,
where ``img_scale`` is the selected image scale and
``scale_idx`` is the selected index in the given candidates.
"""
assert mmcv.is_list_of(img_scales, tuple)
scale_idx = np.random.randint(len(img_scales))
img_scale = img_scales[scale_idx]
return img_scale, scale_idx
@staticmethod
def random_sample(img_scales):
"""Randomly sample an img_scale when ``multiscale_mode=='range'``.
Args:
img_scales (list[tuple]): Images scale range for sampling.
There must be two tuples in img_scales, which specify the lower
and uper bound of image scales.
Returns:
(tuple, None): Returns a tuple ``(img_scale, None)``, where
``img_scale`` is sampled scale and None is just a placeholder
to be consistent with :func:`random_select`.
"""
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2
img_scale_long = [max(s) for s in img_scales]
img_scale_short = [min(s) for s in img_scales]
long_edge = np.random.randint(
min(img_scale_long),
max(img_scale_long) + 1)
short_edge = np.random.randint(
min(img_scale_short),
max(img_scale_short) + 1)
img_scale = (long_edge, short_edge)
return img_scale, None
@staticmethod
def random_sample_ratio(img_scale, ratio_range):
"""Randomly sample an img_scale when ``ratio_range`` is specified.
A ratio will be randomly sampled from the range specified by
``ratio_range``. Then it would be multiplied with ``img_scale`` to
generate sampled scale.
Args:
img_scale (tuple): Images scale base to multiply with ratio.
ratio_range (tuple[float]): The minimum and maximum ratio to scale
the ``img_scale``.
Returns:
(tuple, None): Returns a tuple ``(scale, None)``, where
``scale`` is sampled ratio multiplied with ``img_scale`` and
None is just a placeholder to be consistent with
:func:`random_select`.
"""
assert isinstance(img_scale, tuple) and len(img_scale) == 2
min_ratio, max_ratio = ratio_range
assert min_ratio <= max_ratio
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio)
return scale, None
def _random_scale(self, results):
"""Randomly sample an img_scale according to ``ratio_range`` and
``multiscale_mode``.
If ``ratio_range`` is specified, a ratio will be sampled and be
multiplied with ``img_scale``.
If multiple scales are specified by ``img_scale``, a scale will be
sampled according to ``multiscale_mode``.
Otherwise, single scale will be used.
Args:
results (dict): Result dict from :obj:`dataset`.
Returns:
dict: Two new keys 'scale` and 'scale_idx` are added into
``results``, which would be used by subsequent pipelines.
"""
if self.ratio_range is not None:
if self.img_scale is None:
h, w = results['img'].shape[:2]
scale, scale_idx = self.random_sample_ratio((w, h),
self.ratio_range)
else:
scale, scale_idx = self.random_sample_ratio(
self.img_scale[0], self.ratio_range)
elif len(self.img_scale) == 1:
scale, scale_idx = self.img_scale[0], 0
elif self.multiscale_mode == 'range':
scale, scale_idx = self.random_sample(self.img_scale)
elif self.multiscale_mode == 'value':
scale, scale_idx = self.random_select(self.img_scale)
else:
raise NotImplementedError
results['scale'] = scale
results['scale_idx'] = scale_idx
def _resize_img(self, results):
"""Resize images with ``results['scale']``."""
if self.keep_ratio:
img, scale_factor = mmcv.imrescale(
results['img'], results['scale'], return_scale=True)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results['img'].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results['img'], results['scale'], return_scale=True)
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
results['img'] = img
results['img_shape'] = img.shape
results['pad_shape'] = img.shape # in case that there is no padding
results['scale_factor'] = scale_factor
results['keep_ratio'] = self.keep_ratio
def _resize_seg(self, results):
"""Resize semantic segmentation map with ``results['scale']``."""
for key in results.get('seg_fields', []):
if self.keep_ratio:
gt_seg = mmcv.imrescale(
results[key], results['scale'], interpolation='nearest')
else:
gt_seg = mmcv.imresize(
results[key], results['scale'], interpolation='nearest')
results[key] = gt_seg
def __call__(self, results):
"""Call function to resize images, bounding boxes, masks, semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor',
'keep_ratio' keys are added into result dict.
"""
if 'scale' not in results:
self._random_scale(results)
self._resize_img(results)
self._resize_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (f'(img_scale={self.img_scale}, '
f'multiscale_mode={self.multiscale_mode}, '
f'ratio_range={self.ratio_range}, '
f'keep_ratio={self.keep_ratio})')
return repr_str
@PIPELINES.register_module()
class RandomFlip(object):
"""Flip the image & seg.
If the input dict contains the key "flip", then the flag will be used,
otherwise it will be randomly decided by a ratio specified in the init
method.
Args:
prob (float, optional): The flipping probability. Default: None.
direction(str, optional): The flipping direction. Options are
'horizontal' and 'vertical'. Default: 'horizontal'.
"""
@deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip')
def __init__(self, prob=None, direction='horizontal'):
self.prob = prob
self.direction = direction
if prob is not None:
assert prob >= 0 and prob <= 1
assert direction in ['horizontal', 'vertical']
def __call__(self, results):
"""Call function to flip bounding boxes, masks, semantic segmentation
maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Flipped results, 'flip', 'flip_direction' keys are added into
result dict.
"""
if 'flip' not in results:
flip = True if np.random.rand() < self.prob else False
results['flip'] = flip
if 'flip_direction' not in results:
results['flip_direction'] = self.direction
if results['flip']:
# flip image
results['img'] = mmcv.imflip(
results['img'], direction=results['flip_direction'])
# flip segs
for key in results.get('seg_fields', []):
# use copy() to make numpy stride positive
results[key] = mmcv.imflip(
results[key], direction=results['flip_direction']).copy()
return results
def __repr__(self):
return self.__class__.__name__ + f'(prob={self.prob})'
@PIPELINES.register_module()
class Pad(object):
"""Pad the image & mask.
There are two padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number.
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor",
Args:
size (tuple, optional): Fixed padding size.
size_divisor (int, optional): The divisor of padded size.
pad_val (float, optional): Padding value. Default: 0.
seg_pad_val (float, optional): Padding value of segmentation map.
Default: 255.
"""
def __init__(self,
size=None,
size_divisor=None,
pad_val=0,
seg_pad_val=255):
self.size = size
self.size_divisor = size_divisor
self.pad_val = pad_val
self.seg_pad_val = seg_pad_val
# only one of size and size_divisor should be valid
assert size is not None or size_divisor is not None
assert size is None or size_divisor is None
def _pad_img(self, results):
"""Pad images according to ``self.size``."""
if self.size is not None:
padded_img = mmcv.impad(
results['img'], shape=self.size, pad_val=self.pad_val)
elif self.size_divisor is not None:
padded_img = mmcv.impad_to_multiple(
results['img'], self.size_divisor, pad_val=self.pad_val)
results['img'] = padded_img
results['pad_shape'] = padded_img.shape
results['pad_fixed_size'] = self.size
results['pad_size_divisor'] = self.size_divisor
def _pad_seg(self, results):
"""Pad masks according to ``results['pad_shape']``."""
for key in results.get('seg_fields', []):
results[key] = mmcv.impad(
results[key],
shape=results['pad_shape'][:2],
pad_val=self.seg_pad_val)
def __call__(self, results):
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
self._pad_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \
f'pad_val={self.pad_val})'
return repr_str
@PIPELINES.register_module()
class Normalize(object):
"""Normalize the image.
Added key is "img_norm_cfg".
Args:
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB,
default is true.
"""
def __init__(self, mean, std, to_rgb=True):
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_rgb = to_rgb
def __call__(self, results):
"""Call function to normalize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Normalized results, 'img_norm_cfg' key is added into
result dict.
"""
results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
self.to_rgb)
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \
f'{self.to_rgb})'
return repr_str
@PIPELINES.register_module()
class Rerange(object):
"""Rerange the image pixel value.
Args:
min_value (float or int): Minimum value of the reranged image.
Default: 0.
max_value (float or int): Maximum value of the reranged image.
Default: 255.
"""
def __init__(self, min_value=0, max_value=255):
assert isinstance(min_value, float) or isinstance(min_value, int)
assert isinstance(max_value, float) or isinstance(max_value, int)
assert min_value < max_value
self.min_value = min_value
self.max_value = max_value
def __call__(self, results):
"""Call function to rerange images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Reranged results.
"""
img = results['img']
img_min_value = np.min(img)
img_max_value = np.max(img)
assert img_min_value < img_max_value
# rerange to [0, 1]
img = (img - img_min_value) / (img_max_value - img_min_value)
# rerange to [min_value, max_value]
img = img * (self.max_value - self.min_value) + self.min_value
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(min_value={self.min_value}, max_value={self.max_value})'
return repr_str
@PIPELINES.register_module()
class CLAHE(object):
"""Use CLAHE method to process the image.
See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J].
Graphics Gems, 1994:474-485.` for more information.
Args:
clip_limit (float): Threshold for contrast limiting. Default: 40.0.
tile_grid_size (tuple[int]): Size of grid for histogram equalization.
Input image will be divided into equally sized rectangular tiles.
It defines the number of tiles in row and column. Default: (8, 8).
"""
def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)):
assert isinstance(clip_limit, (float, int))
self.clip_limit = clip_limit
assert is_tuple_of(tile_grid_size, int)
assert len(tile_grid_size) == 2
self.tile_grid_size = tile_grid_size
def __call__(self, results):
"""Call function to Use CLAHE method process images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Processed results.
"""
for i in range(results['img'].shape[2]):
results['img'][:, :, i] = mmcv.clahe(
np.array(results['img'][:, :, i], dtype=np.uint8),
self.clip_limit, self.tile_grid_size)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(clip_limit={self.clip_limit}, '\
f'tile_grid_size={self.tile_grid_size})'
return repr_str
@PIPELINES.register_module()
class RandomCrop(object):
"""Random crop the image & seg.
Args:
crop_size (tuple): Expected size after cropping, (h, w).
cat_max_ratio (float): The maximum ratio that single category could
occupy.
"""
def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255):
assert crop_size[0] > 0 and crop_size[1] > 0
self.crop_size = crop_size
self.cat_max_ratio = cat_max_ratio
self.ignore_index = ignore_index
def get_crop_bbox(self, img):
"""Randomly get a crop bounding box."""
margin_h = max(img.shape[0] - self.crop_size[0], 0)
margin_w = max(img.shape[1] - self.crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
def crop(self, img, crop_bbox):
"""Crop from ``img``"""
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img
def __call__(self, results):
"""Call function to randomly crop images, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Randomly cropped results, 'img_shape' key in result dict is
updated according to crop size.
"""
img = results['img']
crop_bbox = self.get_crop_bbox(img)
if self.cat_max_ratio < 1.:
# Repeat 10 times
for _ in range(10):
seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox)
labels, cnt = np.unique(seg_temp, return_counts=True)
cnt = cnt[labels != self.ignore_index]
if len(cnt) > 1 and np.max(cnt) / np.sum(
cnt) < self.cat_max_ratio:
break
crop_bbox = self.get_crop_bbox(img)
# crop the image
img = self.crop(img, crop_bbox)
img_shape = img.shape
results['img'] = img
results['img_shape'] = img_shape
# crop semantic seg
for key in results.get('seg_fields', []):
results[key] = self.crop(results[key], crop_bbox)
return results
def __repr__(self):
return self.__class__.__name__ + f'(crop_size={self.crop_size})'
@PIPELINES.register_module()
class RandomRotate(object):
"""Rotate the image & seg.
Args:
prob (float): The rotation probability.
degree (float, tuple[float]): Range of degrees to select from. If
degree is a number instead of tuple like (min, max),
the range of degree will be (``-degree``, ``+degree``)
pad_val (float, optional): Padding value of image. Default: 0.
seg_pad_val (float, optional): Padding value of segmentation map.
Default: 255.
center (tuple[float], optional): Center point (w, h) of the rotation in
the source image. If not specified, the center of the image will be
used. Default: None.
auto_bound (bool): Whether to adjust the image size to cover the whole
rotated image. Default: False
"""
def __init__(self,
prob,
degree,
pad_val=0,
seg_pad_val=255,
center=None,
auto_bound=False):
self.prob = prob
assert prob >= 0 and prob <= 1
if isinstance(degree, (float, int)):
assert degree > 0, f'degree {degree} should be positive'
self.degree = (-degree, degree)
else:
self.degree = degree
assert len(self.degree) == 2, f'degree {self.degree} should be a ' \
f'tuple of (min, max)'
self.pal_val = pad_val
self.seg_pad_val = seg_pad_val
self.center = center
self.auto_bound = auto_bound
def __call__(self, results):
"""Call function to rotate image, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Rotated results.
"""
rotate = True if np.random.rand() < self.prob else False
degree = np.random.uniform(min(*self.degree), max(*self.degree))
if rotate:
# rotate image
results['img'] = mmcv.imrotate(
results['img'],
angle=degree,
border_value=self.pal_val,
center=self.center,
auto_bound=self.auto_bound)
# rotate segs
for key in results.get('seg_fields', []):
results[key] = mmcv.imrotate(
results[key],
angle=degree,
border_value=self.seg_pad_val,
center=self.center,
auto_bound=self.auto_bound,
interpolation='nearest')
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob}, ' \
f'degree={self.degree}, ' \
f'pad_val={self.pal_val}, ' \
f'seg_pad_val={self.seg_pad_val}, ' \
f'center={self.center}, ' \
f'auto_bound={self.auto_bound})'
return repr_str
@PIPELINES.register_module()
class RGB2Gray(object):
"""Convert RGB image to grayscale image.
This transform calculate the weighted mean of input image channels with
``weights`` and then expand the channels to ``out_channels``. When
``out_channels`` is None, the number of output channels is the same as
input channels.
Args:
out_channels (int): Expected number of output channels after
transforming. Default: None.
weights (tuple[float]): The weights to calculate the weighted mean.
Default: (0.299, 0.587, 0.114).
"""
def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)):
assert out_channels is None or out_channels > 0
self.out_channels = out_channels
assert isinstance(weights, tuple)
for item in weights:
assert isinstance(item, (float, int))
self.weights = weights
def __call__(self, results):
"""Call function to convert RGB image to grayscale image.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with grayscale image.
"""
img = results['img']
assert len(img.shape) == 3
assert img.shape[2] == len(self.weights)
weights = np.array(self.weights).reshape((1, 1, -1))
img = (img * weights).sum(2, keepdims=True)
if self.out_channels is None:
img = img.repeat(weights.shape[2], axis=2)
else:
img = img.repeat(self.out_channels, axis=2)
results['img'] = img
results['img_shape'] = img.shape
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(out_channels={self.out_channels}, ' \
f'weights={self.weights})'
return repr_str
@PIPELINES.register_module()
class AdjustGamma(object):
"""Using gamma correction to process the image.
Args:
gamma (float or int): Gamma value used in gamma correction.
Default: 1.0.
"""
def __init__(self, gamma=1.0):
assert isinstance(gamma, float) or isinstance(gamma, int)
assert gamma > 0
self.gamma = gamma
inv_gamma = 1.0 / gamma
self.table = np.array([(i / 255.0)**inv_gamma * 255
for i in np.arange(256)]).astype('uint8')
def __call__(self, results):
"""Call function to process the image with gamma correction.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Processed results.
"""
results['img'] = mmcv.lut_transform(
np.array(results['img'], dtype=np.uint8), self.table)
return results
def __repr__(self):
return self.__class__.__name__ + f'(gamma={self.gamma})'
@PIPELINES.register_module()
class SegRescale(object):
"""Rescale semantic segmentation maps.
Args:
scale_factor (float): The scale factor of the final output.
"""
def __init__(self, scale_factor=1):
self.scale_factor = scale_factor
def __call__(self, results):
"""Call function to scale the semantic segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with semantic segmentation map scaled.
"""
for key in results.get('seg_fields', []):
if self.scale_factor != 1:
results[key] = mmcv.imrescale(
results[key], self.scale_factor, interpolation='nearest')
return results
def __repr__(self):
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})'
@PIPELINES.register_module()
class PhotoMetricDistortion(object):
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def convert(self, img, alpha=1, beta=0):
"""Multiple with alpha and add beat with clip."""
img = img.astype(np.float32) * alpha + beta
img = np.clip(img, 0, 255)
return img.astype(np.uint8)
def brightness(self, img):
"""Brightness distortion."""
if random.randint(2):
return self.convert(
img,
beta=random.uniform(-self.brightness_delta,
self.brightness_delta))
return img
def contrast(self, img):
"""Contrast distortion."""
if random.randint(2):
return self.convert(
img,
alpha=random.uniform(self.contrast_lower, self.contrast_upper))
return img
def saturation(self, img):
"""Saturation distortion."""
if random.randint(2):
img = mmcv.bgr2hsv(img)
img[:, :, 1] = self.convert(
img[:, :, 1],
alpha=random.uniform(self.saturation_lower,
self.saturation_upper))
img = mmcv.hsv2bgr(img)
return img
def hue(self, img):
"""Hue distortion."""
if random.randint(2):
img = mmcv.bgr2hsv(img)
img[:, :,
0] = (img[:, :, 0].astype(int) +
random.randint(-self.hue_delta, self.hue_delta)) % 180
img = mmcv.hsv2bgr(img)
return img
def __call__(self, results):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
# random brightness
img = self.brightness(img)
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = random.randint(2)
if mode == 1:
img = self.contrast(img)
# random saturation
img = self.saturation(img)
# random hue
img = self.hue(img)
# random contrast
if mode == 0:
img = self.contrast(img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (f'(brightness_delta={self.brightness_delta}, '
f'contrast_range=({self.contrast_lower}, '
f'{self.contrast_upper}), '
f'saturation_range=({self.saturation_lower}, '
f'{self.saturation_upper}), '
f'hue_delta={self.hue_delta})')
return repr_str
|