Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,873 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os.path as osp

import mmcv
import numpy as np

from ..builder import PIPELINES


@PIPELINES.register_module()
class LoadImageFromFile(object):
    """Load an image from file.

    Required keys are "img_prefix" and "img_info" (a dict that must contain the
    key "filename"). Added or updated keys are "filename", "img", "img_shape",
    "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`),
    "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1).

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
        color_type (str): The flag argument for :func:`mmcv.imfrombytes`.
            Defaults to 'color'.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmcv.fileio.FileClient` for details.
            Defaults to ``dict(backend='disk')``.
        imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default:
            'cv2'
    """

    def __init__(self,
                 to_float32=False,
                 color_type='color',
                 file_client_args=dict(backend='disk'),
                 imdecode_backend='cv2'):
        self.to_float32 = to_float32
        self.color_type = color_type
        self.file_client_args = file_client_args.copy()
        self.file_client = None
        self.imdecode_backend = imdecode_backend

    def __call__(self, results):
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmseg.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)

        if results.get('img_prefix') is not None:
            filename = osp.join(results['img_prefix'],
                                results['img_info']['filename'])
        else:
            filename = results['img_info']['filename']
        img_bytes = self.file_client.get(filename)
        img = mmcv.imfrombytes(
            img_bytes, flag=self.color_type, backend=self.imdecode_backend)
        if self.to_float32:
            img = img.astype(np.float32)

        results['filename'] = filename
        results['ori_filename'] = results['img_info']['filename']
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32},'
        repr_str += f"color_type='{self.color_type}',"
        repr_str += f"imdecode_backend='{self.imdecode_backend}')"
        return repr_str


@PIPELINES.register_module()
class LoadAnnotations(object):
    """Load annotations for semantic segmentation.

    Args:
        reduce_zero_label (bool): Whether reduce all label value by 1.
            Usually used for datasets where 0 is background label.
            Default: False.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmcv.fileio.FileClient` for details.
            Defaults to ``dict(backend='disk')``.
        imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default:
            'pillow'
    """

    def __init__(self,
                 reduce_zero_label=False,
                 file_client_args=dict(backend='disk'),
                 imdecode_backend='pillow'):
        self.reduce_zero_label = reduce_zero_label
        self.file_client_args = file_client_args.copy()
        self.file_client = None
        self.imdecode_backend = imdecode_backend

    def __call__(self, results):
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`mmseg.CustomDataset`.

        Returns:
            dict: The dict contains loaded semantic segmentation annotations.
        """

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)

        if results.get('seg_prefix', None) is not None:
            filename = osp.join(results['seg_prefix'],
                                results['ann_info']['seg_map'])
        else:
            filename = results['ann_info']['seg_map']
        img_bytes = self.file_client.get(filename)
        gt_semantic_seg = mmcv.imfrombytes(
            img_bytes, flag='unchanged',
            backend=self.imdecode_backend).squeeze().astype(np.uint8)
        # modify if custom classes
        if results.get('label_map', None) is not None:
            for old_id, new_id in results['label_map'].items():
                gt_semantic_seg[gt_semantic_seg == old_id] = new_id
        # reduce zero_label
        if self.reduce_zero_label:
            # avoid using underflow conversion
            gt_semantic_seg[gt_semantic_seg == 0] = 255
            gt_semantic_seg = gt_semantic_seg - 1
            gt_semantic_seg[gt_semantic_seg == 254] = 255
        results['gt_semantic_seg'] = gt_semantic_seg
        results['seg_fields'].append('gt_semantic_seg')
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(reduce_zero_label={self.reduce_zero_label},'
        repr_str += f"imdecode_backend='{self.imdecode_backend}')"
        return repr_str