Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,185 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from .builder import DATASETS
from .custom import CustomDataset


@DATASETS.register_module()
class ADE20KDataset(CustomDataset):
    """ADE20K dataset.

    In segmentation map annotation for ADE20K, 0 stands for background, which
    is not included in 150 categories. ``reduce_zero_label`` is fixed to True.
    The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to
    '.png'.
    """
    CLASSES = (
        'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ',
        'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth',
        'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car',
        'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug',
        'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe',
        'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
        'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
        'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path',
        'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door',
        'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table',
        'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove',
        'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar',
        'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
        'chandelier', 'awning', 'streetlight', 'booth', 'television receiver',
        'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister',
        'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van',
        'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything',
        'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent',
        'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank',
        'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake',
        'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce',
        'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen',
        'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
        'clock', 'flag')

    PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
               [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
               [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
               [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
               [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
               [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
               [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
               [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
               [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
               [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
               [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
               [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
               [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
               [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
               [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
               [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
               [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
               [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
               [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
               [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
               [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
               [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
               [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
               [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
               [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
               [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
               [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
               [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
               [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
               [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
               [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
               [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
               [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
               [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
               [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
               [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
               [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
               [102, 255, 0], [92, 0, 255]]

    def __init__(self, **kwargs):
        super(ADE20KDataset, self).__init__(
            img_suffix='.jpg',
            seg_map_suffix='.png',
            reduce_zero_label=True,
            **kwargs)