Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 4,632 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Tutorial 2: Customize Datasets

## Customize datasets by reorganizing data

The simplest way is to convert your dataset to organize your data into folders.

An example of file structure is as followed.

```none
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ my_dataset
β”‚   β”‚   β”œβ”€β”€ img_dir
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{img_suffix}
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{img_suffix}
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{img_suffix}
β”‚   β”‚   β”‚   β”œβ”€β”€ val
β”‚   β”‚   β”œβ”€β”€ ann_dir
β”‚   β”‚   β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{seg_map_suffix}
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{seg_map_suffix}
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{seg_map_suffix}
β”‚   β”‚   β”‚   β”œβ”€β”€ val

```

A training pair will consist of the files with same suffix in img_dir/ann_dir.

If `split` argument is given, only part of the files in img_dir/ann_dir will be loaded.
We may specify the prefix of files we would like to be included in the split txt.

More specifically, for a split txt like following,

```none
xxx
zzz
```

Only
`data/my_dataset/img_dir/train/xxx{img_suffix}`,
`data/my_dataset/img_dir/train/zzz{img_suffix}`,
`data/my_dataset/ann_dir/train/xxx{seg_map_suffix}`,
`data/my_dataset/ann_dir/train/zzz{seg_map_suffix}` will be loaded.

Note: The annotations are images of shape (H, W), the value pixel should fall in range `[0, num_classes - 1]`.
You may use `'P'` mode of [pillow](https://pillow.readthedocs.io/en/stable/handbook/concepts.html#palette) to create your annotation image with color.

## Customize datasets by mixing dataset

MMSegmentation also supports to mix dataset for training.
Currently it supports to concat and repeat datasets.

### Repeat dataset

We use `RepeatDataset` as wrapper to repeat the dataset.
For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following

```python
dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )
```

### Concatenate dataset

There 2 ways to concatenate the dataset.

1. If the datasets you want to concatenate are in the same type with different annotation files,
    you can concatenate the dataset configs like the following.

    1. You may concatenate two `ann_dir`.

        ```python
        dataset_A_train = dict(
            type='Dataset_A',
            img_dir = 'img_dir',
            ann_dir = ['anno_dir_1', 'anno_dir_2'],
            pipeline=train_pipeline
        )
        ```

    2. You may concatenate two `split`.

        ```python
        dataset_A_train = dict(
            type='Dataset_A',
            img_dir = 'img_dir',
            ann_dir = 'anno_dir',
            split = ['split_1.txt', 'split_2.txt'],
            pipeline=train_pipeline
        )
        ```

    3. You may concatenate two `ann_dir` and `split` simultaneously.

        ```python
        dataset_A_train = dict(
            type='Dataset_A',
            img_dir = 'img_dir',
            ann_dir = ['anno_dir_1', 'anno_dir_2'],
            split = ['split_1.txt', 'split_2.txt'],
            pipeline=train_pipeline
        )
        ```

        In this case, `ann_dir_1` and `ann_dir_2` are corresponding to `split_1.txt` and `split_2.txt`.

2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

    ```python
    dataset_A_train = dict()
    dataset_B_train = dict()

    data = dict(
        imgs_per_gpu=2,
        workers_per_gpu=2,
        train = [
            dataset_A_train,
            dataset_B_train
        ],
        val = dataset_A_val,
        test = dataset_A_test
        )
    ```

A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.

```python
dataset_A_train = dict(
    type='RepeatDataset',
    times=N,
    dataset=dict(
        type='Dataset_A',
        ...
        pipeline=train_pipeline
    )
)
dataset_A_val = dict(
    ...
    pipeline=test_pipeline
)
dataset_A_test = dict(
    ...
    pipeline=test_pipeline
)
dataset_B_train = dict(
    type='RepeatDataset',
    times=M,
    dataset=dict(
        type='Dataset_B',
        ...
        pipeline=train_pipeline
    )
)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train = [
        dataset_A_train,
        dataset_B_train
    ],
    val = dataset_A_val,
    test = dataset_A_test
)

```