Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 3,238 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Expectation-Maximization Attention Networks for Semantic Segmentation

## Introduction

[ALGORITHM]

```latex
@inproceedings{li2019expectation,
  title={Expectation-maximization attention networks for semantic segmentation},
  author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9167--9176},
  year={2019}
}
```

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU  | mIoU(ms+flip) |                                                                                                                                                                                          download                                                                                                                                                                                          |
|--------|----------|-----------|--------:|---------:|----------------|------:|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMANet | R-50-D8  | 512x1024  |   80000 |      5.4 | 4.58           | 77.59 | 79.44         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json)     |
| EMANet | R-101-D8 | 512x1024  |   80000 |      6.2 | 2.87           | 79.10 | 81.21         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json) |
| EMANet | R-50-D8  | 769x769   |   80000 |      8.9 | 1.97           | 79.33 | 80.49         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json)         |
| EMANet | R-101-D8 | 769x769   |   80000 |     10.1 | 1.22           | 79.62 | 81.00         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json)     |