File size: 8,656 Bytes
aac1fea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0558012
aac1fea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b867e
 
aac1fea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d99f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac1fea
9d99f0e
aac1fea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: apache-2.0
datasets:
- mbruton/galician_srl
- CoNLL-2012
language:
- gl
- en
metrics:
- seqeval
library_name: transformers
pipeline_tag: token-classification
---

# Model Card for GalBERT-en for Semantic Role Labeling (cased)

This model is fine-tuned on a version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) which is pre-trained on the SRL task for English, and is one of 24 models introduced as part of [this project](https://github.com/mbruton0426/GalicianSRL). Prior to this work, there were no published Galician datasets or models for SRL. 

## Model Details

### Model Description

GalBERT-en for Semantic Role Labeling (SRL) is a transformers model, leveraging mBERT's extensive pretraining on 104 languages to achieve better SRL predictions for low-resource Galician. This model is additionally pre-trained on the SRL task for English. This model is cased: it makes a difference between english and English. It was fine-tuned on Galician with the following objectives: 

- Identify up to 13 verbal roots within a sentence.
- Identify available arguments for each verbal root. Due to scarcity of data, this model focused solely on the identification of arguments 0, 1, and 2.

Labels are formatted as: r#:tag, where r# links the token to a specific verbal root of index #, and tag identifies the token as the verbal root (root) or an individual argument (arg0/arg1/arg2)

- **Developed by:** [Micaella Bruton](mailto:micaellabruton@gmail.com)
- **Model type:** Transformers
- **Language(s) (NLP):** Galician (gl), English (en)
- **License:** Apache 2.0
- **Finetuned from model:** [English pre-trained multilingual BERT](https://huggingface.co/liaad/srl-en_mbert-base)

### Model Sources 

- **Repository:** [GalicianSRL](https://github.com/mbruton0426/GalicianSRL)
- **Paper:** To be updated

## Uses

This model is intended to be used to develop and improve natural language processing tools for Galician.

## Bias, Risks, and Limitations

Galician is a low-resource language which prior to this project lacked a semantic role labeling dataset. As such, the dataset used to train this model is extrememly limited and could benefit from the inclusion of additional sentences and manual validation by native speakers.

## Training Details

### Training Data

This model was pre-trained on the [OntoNotes 5.0 English SRL corpus](http://catalog.ldc.upenn.edu/LDC2013T19).
This model was fine-tuned on the "train" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project.

#### Training Hyperparameters

- **Learning Rate:** 2e-5
- **Batch Size:** 16
- **Weight Decay:** 0.01
- **Early Stopping:** 10 epochs

## Evaluation

#### Testing Data

This model was tested on the "test" portion of the [GalicianSRL Dataset](https://huggingface.co/datasets/mbruton/galician_srl) produced as part of this same project.

#### Metrics

[seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) is a Python framework for sequence labeling evaluation. It can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, and semantic role labeling.
It supplies scoring both overall and per label type.

Overall:
- `accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0.
- `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0.
- `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0.
- `f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0.

Per label type:
- `precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0.
- `recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0.
- `f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0.

### Results

| Label        | Precision | Recall | f1-score | Support |
| :----------: | :-------: | :----: | :------: | :-----: |
| 0:arg0       | 0.74 | 0.76 | 0.75 | 485  |
| 0:arg1       | 0.76 | 0.72 | 0.74 | 483  |
| 0:arg2       | 0.70 | 0.74 | 0.72 | 264  |
| 0:root       | 0.93 | 0.91 | 0.92 | 948  |
| 1:arg0       | 0.67 | 0.62 | 0.64 | 348  |
| 1:arg1       | 0.68 | 0.67 | 0.68 | 443  |
| 1:arg2       | 0.63 | 0.57 | 0.60 | 211  |
| 1:root       | 0.86 | 0.84 | 0.85 | 802  |
| 2:arg0       | 0.57 | 0.52 | 0.54 | 240  |
| 2:arg1       | 0.64 | 0.56 | 0.60 | 331  |
| 2:arg2       | 0.50 | 0.54 | 0.52 | 156  |
| 2:root       | 0.79 | 0.74 | 0.76 | 579  |
| 3:arg0       | 0.45 | 0.39 | 0.42 | 137  |
| 3:arg1       | 0.54 | 0.55 | 0.54 | 216  |
| 3:arg2       | 0.43 | 0.42 | 0.43 | 110  |
| 3:root       | 0.63 | 0.71 | 0.67 | 374  |
| 4:arg0       | 0.48 | 0.46 | 0.47 | 70   |
| 4:arg1       | 0.50 | 0.57 | 0.53 | 109  |
| 4:arg2       | 0.44 | 0.61 | 0.51 | 66   |
| 4:root       | 0.52 | 0.67 | 0.58 | 206  |
| 5:arg0       | 0.36 | 0.25 | 0.29 | 20   |
| 5:arg1       | 0.33 | 0.42 | 0.37 | 57   |
| 5:arg2       | 0.00 | 0.00 | 0.00 | 28   |
| 5:root       | 0.57 | 0.31 | 0.41 | 102  |
| 6:arg0       | 0.00 | 0.00 | 0.00 | 13   |
| 6:arg1       | 0.00 | 0.00 | 0.00 | 25   |
| 6:arg2       | 0.00 | 0.00 | 0.00 | 8    |
| 6:root       | 0.32 | 0.29 | 0.30 | 42   |
| 7:arg0       | 0.00 | 0.00 | 0.00 | 3    |
| 7:arg1       | 0.00 | 0.00 | 0.00 | 8    |
| 7:arg2       | 0.00 | 0.00 | 0.00 | 5    |
| 7:root       | 0.00 | 0.00 | 0.00 | 16   |
| 8:arg0       | 0.00 | 0.00 | 0.00 | 1    |
| 8:arg1       | 0.00 | 0.00 | 0.00 | 2    |
| 8:arg2       | 0.00 | 0.00 | 0.00 | 1    |
| 8:root       | 0.00 | 0.00 | 0.00 | 7    |
| 9:arg0       | 0.00 | 0.00 | 0.00 | 1    |
| 9:arg1       | 0.00 | 0.00 | 0.00 | 2    |
| 9:arg2       | 0.00 | 0.00 | 0.00 | 1    |
| 9:root       | 0.00 | 0.00 | 0.00 | 3    |
| 10:arg1      | 0.00 | 0.00 | 0.00 | 1    |
| 10:root      | 0.00 | 0.00 | 0.00 | 2    |
| micro avg    | 0.70 | 0.68 | 0.69 | 6926 |
| macro avg    | 0.33 | 0.33 | 0.33 | 6926 |
| weighted avg | 0.69 | 0.68 | 0.69 | 6926 |
| tot root avg | 0.42 | 0.41 | 0.41 | 3081 |
| tot A0 avg   | 0.33 | 0.30 | 0.31 | 1318 |
| tot A1 avg   | 0.31 | 0.32 | 0.31 | 1677 |
| tot A2 avg   | 0.27 | 0.29 | 0.28 | 850  |
| tot r0 avg   | 0.78 | 0.78 | 0.78 | 2180 |
| tot r1 avg   | 0.71 | 0.68 | 0.69 | 1804 |
| tot r2 avg   | 0.63 | 0.59 | 0.61 | 1306 |
| tot r3 avg   | 0.51 | 0.52 | 0.52 | 837  |
| tot r4 avg   | 0.49 | 0.58 | 0.52 | 451  |
| tot r5 avg   | 0.32 | 0.25 | 0.27 | 207  |
| tot r6 avg   | 0.08 | 0.07 | 0.08 | 88   |
| tot r7 avg   | 0.00 | 0.00 | 0.00 | 32   |
| tot r8 avg   | 0.00 | 0.00 | 0.00 | 11   |
| tot r9 avg   | 0.00 | 0.00 | 0.00 | 7    |
| tot r10 avg  | 0.00 | 0.00 | 0.00 | 3    |

## Citation

**BibTeX:**

```
@inproceedings{bruton-beloucif-2023-bertie,
    title = "{BERT}ie Bott{'}s Every Flavor Labels: A Tasty Introduction to Semantic Role Labeling for {G}alician",
    author = "Bruton, Micaella  and
      Beloucif, Meriem",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.671",
    doi = "10.18653/v1/2023.emnlp-main.671",
    pages = "10892--10902",
    abstract = "In this paper, we leverage existing corpora, WordNet, and dependency parsing to build the first Galician dataset for training semantic role labeling systems in an effort to expand available NLP resources. Additionally, we introduce verb indexing, a new pre-processing method, which helps increase the performance when semantically parsing highly-complex sentences. We use transfer-learning to test both the resource and the verb indexing method. Our results show that the effects of verb indexing were amplified in scenarios where the model was both pre-trained and fine-tuned on datasets utilizing the method, but improvements are also noticeable when only used during fine-tuning. The best-performing Galician SRL model achieved an f1 score of 0.74, introducing a baseline for future Galician SRL systems. We also tested our method on Spanish where we achieved an f1 score of 0.83, outperforming the baseline set by the 2009 CoNLL Shared Task by 0.025 showing the merits of our verb indexing method for pre-processing.",
}

```