MoDE_CALVIN_ABC_2 / README.md
mbreuss's picture
Upload folder using huggingface_hub
70d252c verified
|
raw
history blame
1.67 kB

library_name: custom tags:

  • robotics
  • diffusion
  • mixture-of-experts
  • multi-modal license: mit datasets:
  • CALVIN languages:
  • en pipeline_tag: robotics ---

MoDE (Mixture of Denoising Experts) Diffusion Policy

Model Description

This model implements a Mixture of Diffusion Experts architecture for robotic manipulation, combining transformer-based backbone with noise-only expert routing. For faster inference, we can precache the chosen expert for each timestep to reduce computation time.

The model has been pretrained on a subset of OXE for 300k steps and finetuned for downstream tasks on the CALVIN/LIBERO dataset.

Model Details

Architecture

  • Base Architecture: MoDE with custom Mixture of Experts Transformer
  • Vision Encoder: ResNet-50 with FiLM conditioning finetuned from ImageNet
  • EMA: Enabled
  • Action Window Size: 10
  • Sampling Steps: 5 (optimal for performance)
  • Sampler Type: DDIM

Input/Output Specifications

Inputs

  • RGB Static Camera: (B, T, 3, H, W) tensor
  • RGB Gripper Camera: (B, T, 3, H, W) tensor
  • Language Instructions: Text strings

Outputs

  • Action Space: (B, T, 7) tensor representing delta EEF actions

Usage

obs = {
    "rgb_obs": {
        "rgb_static": static_image,
        "rgb_gripper": gripper_image
    }
}
goal = {"lang_text": "pick up the blue cube"}
action = model.step(obs, goal)

Training Details

Configuration

  • Optimizer: AdamW
  • Learning Rate: {config.optimizer.learning_rate}
  • Weight Decay: {config.optimizer.transformer_weight_decay}

License

This model is released under the MIT license.