File size: 22,771 Bytes
b781107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from constants import *
from utils import image_to_tensor, tokenizer, tensor_to_image, vocab_size, tokenizer
import torch
import torch.nn.functional as F
from PIL import ImageDraw, Image
from dataset import create_test_dataloader
from vision_language_model import VisionLanguageModel


model = VisionLanguageModel(
    n_embd=HIDDEN_DIM,
    vocab_size=vocab_size,
    img_size=IMAGE_SIZE,
    patch_size=PATCH_SIZE,
    num_heads=NUM_HEADS,
    num_blks_vit=NUM_LAYERS, # Or specific value for ViT layers
    num_blks_dec=NUM_LAYERS, # Or specific value for Decoder layers
    emb_dropout=DROPOUT,
    blk_dropout=DROPOUT,
    max_context=CONTEXT_LENGTH,
    shared_embed_dim=SHARED_EMBED_DIM,
    lambda_contrastive=LAMBDA_CONTRASTIVE,
    lambda_regression=LAMBDA_REGRESSION # Pass the regression weight
).to(DEVICE)

MODEL_PATH = "model_regression_multi_first_100.pth" # "model_regression_multi_16.pth"

if DEVICE == "cuda":
    model.load_state_dict(torch.load(MODEL_PATH, weights_only=True))
else:
    model.load_state_dict(torch.load(MODEL_PATH, weights_only=True, map_location=torch.device('cpu')))
model.eval()

def generate_sample_from_image_text(
    model,
    image_path,
    prompt_label,
    tokenizer,
    device,
    max_new_tokens=70,
    temperature=0.8,
    top_k=10,
    output_path="generated_output.png"
):
    """
    Generates a prediction for an image and prompt text and saves it to a file.
    Generation loop is implemented *within* this function.

    Args:
        model: The trained VisionLanguageModel.
        image_path: Path to the input image.
        prompt_label: Text prompt/label to use.
        tokenizer: The tokenizer used for training.
        device: The computation device ('cuda' or 'cpu').
        max_new_tokens (int): Max tokens to generate after the prompt.
        temperature (float): Softmax temperature for sampling.
        top_k (int): K for top-k sampling (0 or None to disable).
        output_path (str): Path where to save the output image.

    Returns:
        None. Saves the image with prompt and generated output to a file.
    """
    model.eval()  # Set the model to evaluation mode

    try:
        with torch.no_grad(): # No need to track gradients during inference
            # --- 1. Prepare Initial Inputs ---
            # Load and process image
            image = Image.open(image_path)
            image_tensor = image_to_tensor(image).unsqueeze(0).to(device) # Add batch dim

            # Tokenize prompt
            prompt_text = f"<point_start>{prompt_label}<point_end>"
            prompt_tokens = tokenizer(prompt_text, return_tensors="pt", truncation=True, padding=False)
            prompt_ids = prompt_tokens.input_ids.to(device)
            prompt_attention_mask = prompt_tokens.attention_mask.to(device)
            B = 1 # We are processing one sample at a time

            print(f"--- Generating Sample (Manual Loop) ---")
            print(f"Original Label/Prompt Hint: {prompt_label}")
            print(f"Input Prompt Tokens Decoded: {prompt_text}")

            # --- 2. Pre-compute Image & Prompt Embeddings (Part of VLM Forward Logic) ---
            image_embeds_raw = model.vision_encoder(image_tensor) # (1, N_img, C)
            image_embeds_decoder = model.multimodal_projector(image_embeds_raw) # (1, N_img, C)
            prompt_embeds_decoder = model.decoder.token_embedding_table(prompt_ids) # (1, T_prompt, C)

            result_start_token_id = tokenizer.encode("<result_start>", add_special_tokens=False)[0]
            result_start_embed = model.decoder.token_embedding_table(
                torch.tensor([[result_start_token_id]], device=device) # Shape (1, 1, C)
            )

            # The initial sequence fed to the decoder blocks consists of image + prompt
            current_embeds = torch.cat([
                image_embeds_decoder,
                prompt_embeds_decoder,
                result_start_embed # Add the embedding for the first expected output token
                ], dim=1)
            generated_ids = [] # Store newly generated IDs

            # --- 3. Autoregressive Generation Loop ---
            for _ in range(max_new_tokens):
                T_current = current_embeds.shape[1]

                # Truncate if necessary (keep recent context)
                if T_current > model.decoder.max_context: # Access max_context from decoder
                    print(f"Warning: Truncating context from {T_current} to {model.decoder.max_context}")
                    current_embeds = current_embeds[:, -model.decoder.max_context:, :]
                    T_current = model.decoder.max_context

                # Prepare positional embeddings for current length
                pos = torch.arange(0, T_current, dtype=torch.long, device=device)
                pos = pos.clamp(max=model.decoder.max_context - 1) # Clamp indices
                pos_emb = model.decoder.position_embedding_table(pos).unsqueeze(0) # (1, T_current, C)
                x = current_embeds + pos_emb

                # Create attention mask (all ones, causal handles future)
                # Note: We don't need padding mask here as we handle one sequence without padding
                attention_mask = torch.ones(B, T_current, device=device, dtype=torch.long)

                # Pass through Decoder Blocks
                for block in model.decoder.blocks:
                    # We assume the block forward takes (x, attention_mask)
                    x = block(x, attention_mask=attention_mask)

                # Final Layer Norm and LM Head for the *last* token prediction
                x = model.decoder.ln_f(x[:, -1:, :]) # (B, 1, C) -> (1, 1, C)
                logits = model.decoder.lm_head(x)    # (B, 1, V) -> (1, 1, V)
                logits = logits.squeeze(1)           # (B, V)    -> (1, V)

                # Sampling
                logits = logits / temperature
                if top_k is not None and top_k > 0:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')

                probs = F.softmax(logits, dim=-1)
                # idx_next = torch.multinomial(probs, num_samples=1) # (1, 1) # test distribution
                idx_next = torch.argmax(logits, dim=-1, keepdim=True) # test deterministic

                # Store generated ID
                generated_ids.append(idx_next)

                # Stop if EOS token is generated
                if idx_next.item() == tokenizer.eos_token_id:
                    print("EOS token generated.")
                    break

                # Prepare for next iteration: Append embedding of new token
                next_token_embed = model.decoder.token_embedding_table(idx_next) # (1, 1, C)
                current_embeds = torch.cat([current_embeds, next_token_embed], dim=1) # Append along sequence dim

            # --- 4. Combine and Decode Results ---
            if generated_ids:
                generated_ids_tensor = torch.cat(generated_ids, dim=1) # (1, T_generated)
                initial_target_ids = torch.tensor([[result_start_token_id]], device=device)
                full_generated_sequence_ids = torch.cat([prompt_ids, initial_target_ids, generated_ids_tensor], dim=1)
            else:
                full_generated_sequence_ids = prompt_ids # Nothing was generated

            full_decoded_text = tokenizer.decode(full_generated_sequence_ids[0], skip_special_tokens=False)
            print(f"\nFull Generated Sequence (Manual Loop):\n{full_decoded_text}")

            # --- 5. Save visualization to file ---
            save_coords_visualization(
                image_tensor=image_tensor[0], # Remove batch dim for visualization
                full_decoded_text=full_decoded_text,
                tokenizer=tokenizer,
                image_size=IMAGE_SIZE, # Assumes IMAGE_SIZE is globally defined
                num_bins=NUM_BINS,     # Assumes NUM_BINS is globally defined
                output_path=output_path
            )
            print(f"Visualization saved to: {output_path}")

    except Exception as e:
        print(f"An error occurred during sample generation: {e}")
        import traceback
        traceback.print_exc()

def generate_sample_from_test_loader(
    model,
    test_loader,
    tokenizer,
    device,
    max_new_tokens=70,
    temperature=0.8,
    top_k=10,
    output_path="generated_output.png",
    TEST_BATCH=8,
    TEST_IDX=1
):
    """
    Generates a prediction for one sample from the test loader and saves it to a file.
    Generation loop is implemented *within* this function.

    Args:
        model: The trained VisionLanguageModel.
        test_loader: DataLoader for the test set.
        tokenizer: The tokenizer used for training.
        device: The computation device ('cuda' or 'cpu').
        max_new_tokens (int): Max tokens to generate after the prompt.
        temperature (float): Softmax temperature for sampling.
        top_k (int): K for top-k sampling (0 or None to disable).
        output_path (str): Path where to save the output image.

    Returns:
        None. Saves the image with prompt and generated output to a file.
    """

    if not test_loader or len(test_loader.dataset) == 0:
        print("Test loader is empty or not available.")
        return

    model.eval()  # Set the model to evaluation mode

    try:
        # Get a single batch from the test loader
        with torch.no_grad(): # No need to track gradients during inference
            my_iter = iter(test_loader)
            for i in range(TEST_BATCH):
                _ = next(my_iter)
            batch = next(my_iter)

            if batch is None:
                print("Test loader yielded an empty batch.")
                return
            if batch['image'].shape[0] == 0:
                 print("Test loader yielded a batch with 0 items.")
                 return

            # --- 1. Prepare Initial Inputs ---
            image_tensor = batch['image'][TEST_IDX:TEST_IDX+1].to(device) # (1, 3, H, W)
            prompt_ids = batch['prompt_ids'][TEST_IDX:TEST_IDX+1].to(device) # (1, T_prompt)
            prompt_attention_mask = batch['prompt_attention_mask'][TEST_IDX:TEST_IDX+1].to(device) # (1, T_prompt)
            label = batch['label'][TEST_IDX]
            B = 1 # We are processing one sample at a time

            print(f"--- Generating Sample (Manual Loop) ---")
            print(f"Original Label/Prompt Hint: {label}")
            prompt_text = tokenizer.decode(prompt_ids[0], skip_special_tokens=False)
            print(f"Input Prompt Tokens Decoded: {prompt_text}")

            # --- 2. Pre-compute Image & Prompt Embeddings (Part of VLM Forward Logic) ---
            image_embeds_raw = model.vision_encoder(image_tensor) # (1, N_img, C)
            image_embeds_decoder = model.multimodal_projector(image_embeds_raw) # (1, N_img, C)
            prompt_embeds_decoder = model.decoder.token_embedding_table(prompt_ids) # (1, T_prompt, C)

            result_start_token_id = tokenizer.encode("<result_start>", add_special_tokens=False)[0]
            result_start_embed = model.decoder.token_embedding_table(
                torch.tensor([[result_start_token_id]], device=device) # Shape (1, 1, C)
            )

            # The initial sequence fed to the decoder blocks consists of image + prompt
            current_embeds = torch.cat([
                image_embeds_decoder,
                prompt_embeds_decoder,
                result_start_embed # Add the embedding for the first expected output token
                ], dim=1)
            # current_embeds = torch.cat([image_embeds_decoder, prompt_embeds_decoder], dim=1) # (1, T_initial, C)
            generated_ids = [] # Store newly generated IDs

            # --- 3. Autoregressive Generation Loop ---
            for _ in range(max_new_tokens):
                T_current = current_embeds.shape[1]

                # Truncate if necessary (keep recent context)
                if T_current > model.decoder.max_context: # Access max_context from decoder
                    print(f"Warning: Truncating context from {T_current} to {model.decoder.max_context}")
                    current_embeds = current_embeds[:, -model.decoder.max_context:, :]
                    T_current = model.decoder.max_context

                # Prepare positional embeddings for current length
                pos = torch.arange(0, T_current, dtype=torch.long, device=device)
                pos = pos.clamp(max=model.decoder.max_context - 1) # Clamp indices
                pos_emb = model.decoder.position_embedding_table(pos).unsqueeze(0) # (1, T_current, C)
                x = current_embeds + pos_emb

                # Create attention mask (all ones, causal handles future)
                # Note: We don't need padding mask here as we handle one sequence without padding
                attention_mask = torch.ones(B, T_current, device=device, dtype=torch.long)

                # Pass through Decoder Blocks
                for block in model.decoder.blocks:
                    # We assume the block forward takes (x, attention_mask)
                    x = block(x, attention_mask=attention_mask)

                # Final Layer Norm and LM Head for the *last* token prediction
                x = model.decoder.ln_f(x[:, -1:, :]) # (B, 1, C) -> (1, 1, C)
                logits = model.decoder.lm_head(x)    # (B, 1, V) -> (1, 1, V)
                logits = logits.squeeze(1)           # (B, V)    -> (1, V)

                # Sampling
                logits = logits / temperature
                if top_k is not None and top_k > 0:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')

                probs = F.softmax(logits, dim=-1)
                # idx_next = torch.multinomial(probs, num_samples=1) # (1, 1) # test distribution
                idx_next = torch.argmax(logits, dim=-1, keepdim=True) # test deterministic

                # Store generated ID
                generated_ids.append(idx_next)

                # Stop if EOS token is generated
                if idx_next.item() == tokenizer.eos_token_id:
                    print("EOS token generated.")
                    break

                # Prepare for next iteration: Append embedding of new token
                next_token_embed = model.decoder.token_embedding_table(idx_next) # (1, 1, C)
                current_embeds = torch.cat([current_embeds, next_token_embed], dim=1) # Append along sequence dim

            # --- 4. Combine and Decode Results ---
            if generated_ids:
                generated_ids_tensor = torch.cat(generated_ids, dim=1) # (1, T_generated)
                initial_target_ids = torch.tensor([[result_start_token_id]], device=device)
                full_generated_sequence_ids = torch.cat([prompt_ids, initial_target_ids, generated_ids_tensor], dim=1)
            else:
                full_generated_sequence_ids = prompt_ids # Nothing was generated

            full_decoded_text = tokenizer.decode(full_generated_sequence_ids[0], skip_special_tokens=False)
            print(f"\nFull Generated Sequence (Manual Loop):\n{full_decoded_text}")

            # --- 5. Save visualization to file ---
            save_coords_visualization(
                image_tensor=image_tensor[0], # Remove batch dim for visualization
                full_decoded_text=full_decoded_text,
                tokenizer=tokenizer,
                image_size=IMAGE_SIZE, # Assumes IMAGE_SIZE is globally defined
                num_bins=NUM_BINS,     # Assumes NUM_BINS is globally defined
                output_path=output_path
            )
            print(f"Visualization saved to: {output_path}")

    except StopIteration:
        print("Test loader is exhausted.")
    except Exception as e:
        print(f"An error occurred during sample generation: {e}")
        import traceback
        traceback.print_exc()

def parse_coordinate_tokens(text, tokenizer, num_bins):
    """
    Parses generated text to extract coordinate bin tokens.

    Args:
        text (str): The decoded output text from the model.
        tokenizer: The tokenizer.
        num_bins (int): The number of coordinate bins used.

    Returns:
        list[tuple(int, int)]: A list of (x_bin, y_bin) tuples, or None if parsing fails.
    """
    coords = []
    try:
        # Basic parsing - look for the pattern
        x_start_token = "<pointx_start>"
        x_end_token = "<pointx_end>"
        y_start_token = "<pointy_start>"
        y_end_token = "<pointy_end>"
        result_end_token = "<result_end>"

        # Find where the actual results start
        try:
             start_index = text.index("<result_start>") + len("<result_start>")
        except ValueError:
             print("Warning: <result_start> not found in generated text.")
             return None

        # Find where results end
        try:
             end_index = text.index(result_end_token, start_index)
        except ValueError:
             end_index = len(text) # Use end of string if <result_end> is missing
             print(f"Warning: {result_end_token} not found. Parsing until end of string.")


        current_pos = start_index
        while current_pos < end_index:
            # Find next X coordinate
            x_start_idx = text.find(x_start_token, current_pos)
            if x_start_idx == -1 or x_start_idx >= end_index: break # No more x points found
            x_start_idx += len(x_start_token)

            x_end_idx = text.find(x_end_token, x_start_idx)
            if x_end_idx == -1 or x_end_idx >= end_index: break # Malformed

            x_token_str = text[x_start_idx:x_end_idx].strip()

            # Find next Y coordinate (must follow X)
            y_start_idx = text.find(y_start_token, x_end_idx)
            if y_start_idx == -1 or y_start_idx >= end_index: break # No corresponding y point
            y_start_idx += len(y_start_token)

            y_end_idx = text.find(y_end_token, y_start_idx)
            if y_end_idx == -1 or y_end_idx >= end_index: break # Malformed

            y_token_str = text[y_start_idx:y_end_idx].strip()
            
            x_token_str = x_token_str[:-1]
            y_token_str = y_token_str[:-1]

            # Convert token strings to bin numbers
            try:
                x_bin = int(x_token_str.split("_")[-1])
                y_bin = int(y_token_str.split("_")[-1])
                if 0 <= x_bin < num_bins and 0 <= y_bin < num_bins:
                    coords.append((x_bin, y_bin))
                else:
                    print(f"Warning: Parsed bin indices out of range ({x_bin}, {y_bin}). Skipping.")
            except (ValueError, IndexError):
                print(f"Warning: Could not parse bins from tokens '{x_token_str}', '{y_token_str}'. Skipping.")

            # Move search position past the found Y token
            current_pos = y_end_idx + len(y_end_token)

        return coords if coords else None

    except Exception as e:
        print(f"Error during coordinate parsing: {e}")
        return None


def save_coords_visualization(image_tensor, full_decoded_text, tokenizer, image_size, num_bins, output_path):
    """Parses coords, draws them on the image, and saves to a file."""
    parsed_bins = parse_coordinate_tokens(full_decoded_text, tokenizer, num_bins)

    # Convert tensor to PIL image for drawing
    try:
        pil_image = tensor_to_image(image_tensor.cpu()) # Ensure tensor is on CPU
    except Exception as e:
        print(f"Error converting tensor to image: {e}")
        # Create a placeholder image if conversion fails
        pil_image = Image.new('RGB', (image_size, image_size), color='white')
        draw = ImageDraw.Draw(pil_image)
        draw.text((10, 10), "Image conversion failed", fill="black")
        pil_image.save(output_path)
        return

    draw = ImageDraw.Draw(pil_image)
    radius = 5 # Radius of the drawn point

    if parsed_bins:
        print(f"\nParsed Coordinate Bins: {parsed_bins}")
        bin_size_pixels = image_size / num_bins
        for x_bin, y_bin in parsed_bins:
            # Calculate center of the bin in pixels
            center_x = (x_bin + 0.5) * bin_size_pixels
            center_y = (y_bin + 0.5) * bin_size_pixels

            # Draw a circle
            bbox = [center_x - radius, center_y - radius, center_x + radius, center_y + radius]
            draw.ellipse(bbox, outline="red", width=3)
            # Optional: Draw bin boundaries for debugging
            # draw.rectangle([x_bin*bin_size_pixels, y_bin*bin_size_pixels, (x_bin+1)*bin_size_pixels, (y_bin+1)*bin_size_pixels], outline="blue", width=1)

        # Add a text label with the coordinates at the top of the image
        coord_text = f"Generated Point(s): {parsed_bins}"
        draw.text((10, 10), coord_text, fill="red")
    else:
        print("\nCould not parse valid coordinates from the generated text.")
        # Add a text label indicating no coordinates were found
        draw.text((10, 10), "No Coordinates Parsed", fill="red")

    # Save the image to file
    pil_image.save(output_path)


import argparse

# --- Example Usage ---
# python infer.py --image ./data/test_images/image_1.png --prompt "a red apple"
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--image', type=str, help='Path to input image')
    parser.add_argument('--prompt', type=str, help='Prompt label for generation')
    args = parser.parse_args()
    if args.image and args.prompt:
        # Use image and prompt based generation
        if 'model' in locals() and 'tokenizer' in locals():
            generate_sample_from_image_text(
                model=model,
                image_path=args.image,
                prompt_label=args.prompt,
                tokenizer=tokenizer,
                device=DEVICE,
                output_path="model_prediction.png"
            )
        else:
            print("Please ensure 'model' and 'tokenizer' are loaded before running generation.")
    else:
        # Use test loader based generation
        if 'model' in locals() and 'test_loader' in locals() and 'tokenizer' in locals():
            test_loader = create_test_dataloader(batch_size=2, num_workers=0)
            generate_sample_from_test_loader(
                model=model,
                test_loader=test_loader,
                tokenizer=tokenizer,
                device=DEVICE,
                output_path="model_prediction.png"
            )
        else:
            print("Please ensure 'model', 'test_loader', and 'tokenizer' are loaded before running generation.")