File size: 22,771 Bytes
b781107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
from constants import *
from utils import image_to_tensor, tokenizer, tensor_to_image, vocab_size, tokenizer
import torch
import torch.nn.functional as F
from PIL import ImageDraw, Image
from dataset import create_test_dataloader
from vision_language_model import VisionLanguageModel
model = VisionLanguageModel(
n_embd=HIDDEN_DIM,
vocab_size=vocab_size,
img_size=IMAGE_SIZE,
patch_size=PATCH_SIZE,
num_heads=NUM_HEADS,
num_blks_vit=NUM_LAYERS, # Or specific value for ViT layers
num_blks_dec=NUM_LAYERS, # Or specific value for Decoder layers
emb_dropout=DROPOUT,
blk_dropout=DROPOUT,
max_context=CONTEXT_LENGTH,
shared_embed_dim=SHARED_EMBED_DIM,
lambda_contrastive=LAMBDA_CONTRASTIVE,
lambda_regression=LAMBDA_REGRESSION # Pass the regression weight
).to(DEVICE)
MODEL_PATH = "model_regression_multi_first_100.pth" # "model_regression_multi_16.pth"
if DEVICE == "cuda":
model.load_state_dict(torch.load(MODEL_PATH, weights_only=True))
else:
model.load_state_dict(torch.load(MODEL_PATH, weights_only=True, map_location=torch.device('cpu')))
model.eval()
def generate_sample_from_image_text(
model,
image_path,
prompt_label,
tokenizer,
device,
max_new_tokens=70,
temperature=0.8,
top_k=10,
output_path="generated_output.png"
):
"""
Generates a prediction for an image and prompt text and saves it to a file.
Generation loop is implemented *within* this function.
Args:
model: The trained VisionLanguageModel.
image_path: Path to the input image.
prompt_label: Text prompt/label to use.
tokenizer: The tokenizer used for training.
device: The computation device ('cuda' or 'cpu').
max_new_tokens (int): Max tokens to generate after the prompt.
temperature (float): Softmax temperature for sampling.
top_k (int): K for top-k sampling (0 or None to disable).
output_path (str): Path where to save the output image.
Returns:
None. Saves the image with prompt and generated output to a file.
"""
model.eval() # Set the model to evaluation mode
try:
with torch.no_grad(): # No need to track gradients during inference
# --- 1. Prepare Initial Inputs ---
# Load and process image
image = Image.open(image_path)
image_tensor = image_to_tensor(image).unsqueeze(0).to(device) # Add batch dim
# Tokenize prompt
prompt_text = f"<point_start>{prompt_label}<point_end>"
prompt_tokens = tokenizer(prompt_text, return_tensors="pt", truncation=True, padding=False)
prompt_ids = prompt_tokens.input_ids.to(device)
prompt_attention_mask = prompt_tokens.attention_mask.to(device)
B = 1 # We are processing one sample at a time
print(f"--- Generating Sample (Manual Loop) ---")
print(f"Original Label/Prompt Hint: {prompt_label}")
print(f"Input Prompt Tokens Decoded: {prompt_text}")
# --- 2. Pre-compute Image & Prompt Embeddings (Part of VLM Forward Logic) ---
image_embeds_raw = model.vision_encoder(image_tensor) # (1, N_img, C)
image_embeds_decoder = model.multimodal_projector(image_embeds_raw) # (1, N_img, C)
prompt_embeds_decoder = model.decoder.token_embedding_table(prompt_ids) # (1, T_prompt, C)
result_start_token_id = tokenizer.encode("<result_start>", add_special_tokens=False)[0]
result_start_embed = model.decoder.token_embedding_table(
torch.tensor([[result_start_token_id]], device=device) # Shape (1, 1, C)
)
# The initial sequence fed to the decoder blocks consists of image + prompt
current_embeds = torch.cat([
image_embeds_decoder,
prompt_embeds_decoder,
result_start_embed # Add the embedding for the first expected output token
], dim=1)
generated_ids = [] # Store newly generated IDs
# --- 3. Autoregressive Generation Loop ---
for _ in range(max_new_tokens):
T_current = current_embeds.shape[1]
# Truncate if necessary (keep recent context)
if T_current > model.decoder.max_context: # Access max_context from decoder
print(f"Warning: Truncating context from {T_current} to {model.decoder.max_context}")
current_embeds = current_embeds[:, -model.decoder.max_context:, :]
T_current = model.decoder.max_context
# Prepare positional embeddings for current length
pos = torch.arange(0, T_current, dtype=torch.long, device=device)
pos = pos.clamp(max=model.decoder.max_context - 1) # Clamp indices
pos_emb = model.decoder.position_embedding_table(pos).unsqueeze(0) # (1, T_current, C)
x = current_embeds + pos_emb
# Create attention mask (all ones, causal handles future)
# Note: We don't need padding mask here as we handle one sequence without padding
attention_mask = torch.ones(B, T_current, device=device, dtype=torch.long)
# Pass through Decoder Blocks
for block in model.decoder.blocks:
# We assume the block forward takes (x, attention_mask)
x = block(x, attention_mask=attention_mask)
# Final Layer Norm and LM Head for the *last* token prediction
x = model.decoder.ln_f(x[:, -1:, :]) # (B, 1, C) -> (1, 1, C)
logits = model.decoder.lm_head(x) # (B, 1, V) -> (1, 1, V)
logits = logits.squeeze(1) # (B, V) -> (1, V)
# Sampling
logits = logits / temperature
if top_k is not None and top_k > 0:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
# idx_next = torch.multinomial(probs, num_samples=1) # (1, 1) # test distribution
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # test deterministic
# Store generated ID
generated_ids.append(idx_next)
# Stop if EOS token is generated
if idx_next.item() == tokenizer.eos_token_id:
print("EOS token generated.")
break
# Prepare for next iteration: Append embedding of new token
next_token_embed = model.decoder.token_embedding_table(idx_next) # (1, 1, C)
current_embeds = torch.cat([current_embeds, next_token_embed], dim=1) # Append along sequence dim
# --- 4. Combine and Decode Results ---
if generated_ids:
generated_ids_tensor = torch.cat(generated_ids, dim=1) # (1, T_generated)
initial_target_ids = torch.tensor([[result_start_token_id]], device=device)
full_generated_sequence_ids = torch.cat([prompt_ids, initial_target_ids, generated_ids_tensor], dim=1)
else:
full_generated_sequence_ids = prompt_ids # Nothing was generated
full_decoded_text = tokenizer.decode(full_generated_sequence_ids[0], skip_special_tokens=False)
print(f"\nFull Generated Sequence (Manual Loop):\n{full_decoded_text}")
# --- 5. Save visualization to file ---
save_coords_visualization(
image_tensor=image_tensor[0], # Remove batch dim for visualization
full_decoded_text=full_decoded_text,
tokenizer=tokenizer,
image_size=IMAGE_SIZE, # Assumes IMAGE_SIZE is globally defined
num_bins=NUM_BINS, # Assumes NUM_BINS is globally defined
output_path=output_path
)
print(f"Visualization saved to: {output_path}")
except Exception as e:
print(f"An error occurred during sample generation: {e}")
import traceback
traceback.print_exc()
def generate_sample_from_test_loader(
model,
test_loader,
tokenizer,
device,
max_new_tokens=70,
temperature=0.8,
top_k=10,
output_path="generated_output.png",
TEST_BATCH=8,
TEST_IDX=1
):
"""
Generates a prediction for one sample from the test loader and saves it to a file.
Generation loop is implemented *within* this function.
Args:
model: The trained VisionLanguageModel.
test_loader: DataLoader for the test set.
tokenizer: The tokenizer used for training.
device: The computation device ('cuda' or 'cpu').
max_new_tokens (int): Max tokens to generate after the prompt.
temperature (float): Softmax temperature for sampling.
top_k (int): K for top-k sampling (0 or None to disable).
output_path (str): Path where to save the output image.
Returns:
None. Saves the image with prompt and generated output to a file.
"""
if not test_loader or len(test_loader.dataset) == 0:
print("Test loader is empty or not available.")
return
model.eval() # Set the model to evaluation mode
try:
# Get a single batch from the test loader
with torch.no_grad(): # No need to track gradients during inference
my_iter = iter(test_loader)
for i in range(TEST_BATCH):
_ = next(my_iter)
batch = next(my_iter)
if batch is None:
print("Test loader yielded an empty batch.")
return
if batch['image'].shape[0] == 0:
print("Test loader yielded a batch with 0 items.")
return
# --- 1. Prepare Initial Inputs ---
image_tensor = batch['image'][TEST_IDX:TEST_IDX+1].to(device) # (1, 3, H, W)
prompt_ids = batch['prompt_ids'][TEST_IDX:TEST_IDX+1].to(device) # (1, T_prompt)
prompt_attention_mask = batch['prompt_attention_mask'][TEST_IDX:TEST_IDX+1].to(device) # (1, T_prompt)
label = batch['label'][TEST_IDX]
B = 1 # We are processing one sample at a time
print(f"--- Generating Sample (Manual Loop) ---")
print(f"Original Label/Prompt Hint: {label}")
prompt_text = tokenizer.decode(prompt_ids[0], skip_special_tokens=False)
print(f"Input Prompt Tokens Decoded: {prompt_text}")
# --- 2. Pre-compute Image & Prompt Embeddings (Part of VLM Forward Logic) ---
image_embeds_raw = model.vision_encoder(image_tensor) # (1, N_img, C)
image_embeds_decoder = model.multimodal_projector(image_embeds_raw) # (1, N_img, C)
prompt_embeds_decoder = model.decoder.token_embedding_table(prompt_ids) # (1, T_prompt, C)
result_start_token_id = tokenizer.encode("<result_start>", add_special_tokens=False)[0]
result_start_embed = model.decoder.token_embedding_table(
torch.tensor([[result_start_token_id]], device=device) # Shape (1, 1, C)
)
# The initial sequence fed to the decoder blocks consists of image + prompt
current_embeds = torch.cat([
image_embeds_decoder,
prompt_embeds_decoder,
result_start_embed # Add the embedding for the first expected output token
], dim=1)
# current_embeds = torch.cat([image_embeds_decoder, prompt_embeds_decoder], dim=1) # (1, T_initial, C)
generated_ids = [] # Store newly generated IDs
# --- 3. Autoregressive Generation Loop ---
for _ in range(max_new_tokens):
T_current = current_embeds.shape[1]
# Truncate if necessary (keep recent context)
if T_current > model.decoder.max_context: # Access max_context from decoder
print(f"Warning: Truncating context from {T_current} to {model.decoder.max_context}")
current_embeds = current_embeds[:, -model.decoder.max_context:, :]
T_current = model.decoder.max_context
# Prepare positional embeddings for current length
pos = torch.arange(0, T_current, dtype=torch.long, device=device)
pos = pos.clamp(max=model.decoder.max_context - 1) # Clamp indices
pos_emb = model.decoder.position_embedding_table(pos).unsqueeze(0) # (1, T_current, C)
x = current_embeds + pos_emb
# Create attention mask (all ones, causal handles future)
# Note: We don't need padding mask here as we handle one sequence without padding
attention_mask = torch.ones(B, T_current, device=device, dtype=torch.long)
# Pass through Decoder Blocks
for block in model.decoder.blocks:
# We assume the block forward takes (x, attention_mask)
x = block(x, attention_mask=attention_mask)
# Final Layer Norm and LM Head for the *last* token prediction
x = model.decoder.ln_f(x[:, -1:, :]) # (B, 1, C) -> (1, 1, C)
logits = model.decoder.lm_head(x) # (B, 1, V) -> (1, 1, V)
logits = logits.squeeze(1) # (B, V) -> (1, V)
# Sampling
logits = logits / temperature
if top_k is not None and top_k > 0:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
# idx_next = torch.multinomial(probs, num_samples=1) # (1, 1) # test distribution
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # test deterministic
# Store generated ID
generated_ids.append(idx_next)
# Stop if EOS token is generated
if idx_next.item() == tokenizer.eos_token_id:
print("EOS token generated.")
break
# Prepare for next iteration: Append embedding of new token
next_token_embed = model.decoder.token_embedding_table(idx_next) # (1, 1, C)
current_embeds = torch.cat([current_embeds, next_token_embed], dim=1) # Append along sequence dim
# --- 4. Combine and Decode Results ---
if generated_ids:
generated_ids_tensor = torch.cat(generated_ids, dim=1) # (1, T_generated)
initial_target_ids = torch.tensor([[result_start_token_id]], device=device)
full_generated_sequence_ids = torch.cat([prompt_ids, initial_target_ids, generated_ids_tensor], dim=1)
else:
full_generated_sequence_ids = prompt_ids # Nothing was generated
full_decoded_text = tokenizer.decode(full_generated_sequence_ids[0], skip_special_tokens=False)
print(f"\nFull Generated Sequence (Manual Loop):\n{full_decoded_text}")
# --- 5. Save visualization to file ---
save_coords_visualization(
image_tensor=image_tensor[0], # Remove batch dim for visualization
full_decoded_text=full_decoded_text,
tokenizer=tokenizer,
image_size=IMAGE_SIZE, # Assumes IMAGE_SIZE is globally defined
num_bins=NUM_BINS, # Assumes NUM_BINS is globally defined
output_path=output_path
)
print(f"Visualization saved to: {output_path}")
except StopIteration:
print("Test loader is exhausted.")
except Exception as e:
print(f"An error occurred during sample generation: {e}")
import traceback
traceback.print_exc()
def parse_coordinate_tokens(text, tokenizer, num_bins):
"""
Parses generated text to extract coordinate bin tokens.
Args:
text (str): The decoded output text from the model.
tokenizer: The tokenizer.
num_bins (int): The number of coordinate bins used.
Returns:
list[tuple(int, int)]: A list of (x_bin, y_bin) tuples, or None if parsing fails.
"""
coords = []
try:
# Basic parsing - look for the pattern
x_start_token = "<pointx_start>"
x_end_token = "<pointx_end>"
y_start_token = "<pointy_start>"
y_end_token = "<pointy_end>"
result_end_token = "<result_end>"
# Find where the actual results start
try:
start_index = text.index("<result_start>") + len("<result_start>")
except ValueError:
print("Warning: <result_start> not found in generated text.")
return None
# Find where results end
try:
end_index = text.index(result_end_token, start_index)
except ValueError:
end_index = len(text) # Use end of string if <result_end> is missing
print(f"Warning: {result_end_token} not found. Parsing until end of string.")
current_pos = start_index
while current_pos < end_index:
# Find next X coordinate
x_start_idx = text.find(x_start_token, current_pos)
if x_start_idx == -1 or x_start_idx >= end_index: break # No more x points found
x_start_idx += len(x_start_token)
x_end_idx = text.find(x_end_token, x_start_idx)
if x_end_idx == -1 or x_end_idx >= end_index: break # Malformed
x_token_str = text[x_start_idx:x_end_idx].strip()
# Find next Y coordinate (must follow X)
y_start_idx = text.find(y_start_token, x_end_idx)
if y_start_idx == -1 or y_start_idx >= end_index: break # No corresponding y point
y_start_idx += len(y_start_token)
y_end_idx = text.find(y_end_token, y_start_idx)
if y_end_idx == -1 or y_end_idx >= end_index: break # Malformed
y_token_str = text[y_start_idx:y_end_idx].strip()
x_token_str = x_token_str[:-1]
y_token_str = y_token_str[:-1]
# Convert token strings to bin numbers
try:
x_bin = int(x_token_str.split("_")[-1])
y_bin = int(y_token_str.split("_")[-1])
if 0 <= x_bin < num_bins and 0 <= y_bin < num_bins:
coords.append((x_bin, y_bin))
else:
print(f"Warning: Parsed bin indices out of range ({x_bin}, {y_bin}). Skipping.")
except (ValueError, IndexError):
print(f"Warning: Could not parse bins from tokens '{x_token_str}', '{y_token_str}'. Skipping.")
# Move search position past the found Y token
current_pos = y_end_idx + len(y_end_token)
return coords if coords else None
except Exception as e:
print(f"Error during coordinate parsing: {e}")
return None
def save_coords_visualization(image_tensor, full_decoded_text, tokenizer, image_size, num_bins, output_path):
"""Parses coords, draws them on the image, and saves to a file."""
parsed_bins = parse_coordinate_tokens(full_decoded_text, tokenizer, num_bins)
# Convert tensor to PIL image for drawing
try:
pil_image = tensor_to_image(image_tensor.cpu()) # Ensure tensor is on CPU
except Exception as e:
print(f"Error converting tensor to image: {e}")
# Create a placeholder image if conversion fails
pil_image = Image.new('RGB', (image_size, image_size), color='white')
draw = ImageDraw.Draw(pil_image)
draw.text((10, 10), "Image conversion failed", fill="black")
pil_image.save(output_path)
return
draw = ImageDraw.Draw(pil_image)
radius = 5 # Radius of the drawn point
if parsed_bins:
print(f"\nParsed Coordinate Bins: {parsed_bins}")
bin_size_pixels = image_size / num_bins
for x_bin, y_bin in parsed_bins:
# Calculate center of the bin in pixels
center_x = (x_bin + 0.5) * bin_size_pixels
center_y = (y_bin + 0.5) * bin_size_pixels
# Draw a circle
bbox = [center_x - radius, center_y - radius, center_x + radius, center_y + radius]
draw.ellipse(bbox, outline="red", width=3)
# Optional: Draw bin boundaries for debugging
# draw.rectangle([x_bin*bin_size_pixels, y_bin*bin_size_pixels, (x_bin+1)*bin_size_pixels, (y_bin+1)*bin_size_pixels], outline="blue", width=1)
# Add a text label with the coordinates at the top of the image
coord_text = f"Generated Point(s): {parsed_bins}"
draw.text((10, 10), coord_text, fill="red")
else:
print("\nCould not parse valid coordinates from the generated text.")
# Add a text label indicating no coordinates were found
draw.text((10, 10), "No Coordinates Parsed", fill="red")
# Save the image to file
pil_image.save(output_path)
import argparse
# --- Example Usage ---
# python infer.py --image ./data/test_images/image_1.png --prompt "a red apple"
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, help='Path to input image')
parser.add_argument('--prompt', type=str, help='Prompt label for generation')
args = parser.parse_args()
if args.image and args.prompt:
# Use image and prompt based generation
if 'model' in locals() and 'tokenizer' in locals():
generate_sample_from_image_text(
model=model,
image_path=args.image,
prompt_label=args.prompt,
tokenizer=tokenizer,
device=DEVICE,
output_path="model_prediction.png"
)
else:
print("Please ensure 'model' and 'tokenizer' are loaded before running generation.")
else:
# Use test loader based generation
if 'model' in locals() and 'test_loader' in locals() and 'tokenizer' in locals():
test_loader = create_test_dataloader(batch_size=2, num_workers=0)
generate_sample_from_test_loader(
model=model,
test_loader=test_loader,
tokenizer=tokenizer,
device=DEVICE,
output_path="model_prediction.png"
)
else:
print("Please ensure 'model', 'test_loader', and 'tokenizer' are loaded before running generation.") |