File size: 135,034 Bytes
a8db1fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: ultralytics in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (8.2.56)\n",
"Requirement already satisfied: numpy<2.0.0,>=1.23.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (1.26.4)\n",
"Requirement already satisfied: matplotlib>=3.3.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (3.9.0)\n",
"Requirement already satisfied: opencv-python>=4.6.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (4.9.0.80)\n",
"Requirement already satisfied: pillow>=7.1.2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (10.3.0)\n",
"Requirement already satisfied: pyyaml>=5.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (6.0.1)\n",
"Requirement already satisfied: requests>=2.23.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.32.2)\n",
"Requirement already satisfied: scipy>=1.4.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (1.13.1)\n",
"Requirement already satisfied: torch>=1.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.3.1+cu118)\n",
"Requirement already satisfied: torchvision>=0.9.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (0.18.1)\n",
"Requirement already satisfied: tqdm>=4.64.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (4.66.4)\n",
"Requirement already satisfied: psutil in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (5.9.8)\n",
"Requirement already satisfied: py-cpuinfo in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (9.0.0)\n",
"Requirement already satisfied: pandas>=1.1.4 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.2.2)\n",
"Requirement already satisfied: seaborn>=0.11.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (0.13.2)\n",
"Requirement already satisfied: ultralytics-thop>=2.0.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from ultralytics) (2.0.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.2.1)\n",
"Requirement already satisfied: cycler>=0.10 in c:\\users\\user\\appdata\\roaming\\python\\python39\\site-packages (from matplotlib>=3.3.0->ultralytics) (0.10.0)\n",
"Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (4.52.4)\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.5)\n",
"Requirement already satisfied: packaging>=20.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (24.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (3.1.2)\n",
"Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0)\n",
"Requirement already satisfied: importlib-resources>=3.2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (6.4.0)\n",
"Requirement already satisfied: pytz>=2020.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2024.1)\n",
"Requirement already satisfied: tzdata>=2022.7 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2024.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2.2.1)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2023.7.22)\n",
"Requirement already satisfied: filelock in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.14.0)\n",
"Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (4.11.0)\n",
"Requirement already satisfied: sympy in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (1.12)\n",
"Requirement already satisfied: networkx in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n",
"Requirement already satisfied: jinja2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.1.4)\n",
"Requirement already satisfied: fsspec in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2024.5.0)\n",
"Requirement already satisfied: mkl<=2021.4.0,>=2021.1.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2021.4.0)\n",
"Requirement already satisfied: colorama in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from tqdm>=4.64.0->ultralytics) (0.4.6)\n",
"Requirement already satisfied: six in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from cycler>=0.10->matplotlib>=3.3.0->ultralytics) (1.16.0)\n",
"Requirement already satisfied: zipp>=3.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from importlib-resources>=3.2.0->matplotlib>=3.3.0->ultralytics) (3.17.0)\n",
"Requirement already satisfied: intel-openmp==2021.* in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from mkl<=2021.4.0,>=2021.1.1->torch>=1.8.0->ultralytics) (2021.4.0)\n",
"Requirement already satisfied: tbb==2021.* in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from mkl<=2021.4.0,>=2021.1.1->torch>=1.8.0->ultralytics) (2021.12.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n",
"Requirement already satisfied: mpmath>=0.19 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from sympy->torch>=1.8.0->ultralytics) (1.3.0)\n"
]
}
],
"source": [
"!pip install ultralytics"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-worldv2.pt to 'yolov8s-worldv2.pt'...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 24.7M/24.7M [00:03<00:00, 6.53MB/s]\n"
]
}
],
"source": [
"from ultralytics import YOLOWorld\n",
"\n",
"# Load the pre-trained model\n",
"model = YOLOWorld('yolov8s-worldv2.pt')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ultralytics YOLOv8.2.56 Python-3.9.19 torch-2.3.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4070, 12282MiB)\n",
"\u001b[34m\u001b[1mengine\\trainer: \u001b[0mtask=detect, mode=train, model=yolov8s-worldv2.pt, data=lvis.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\\detect\\train\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2] \n",
" 1 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n",
" 2 -1 1 29056 ultralytics.nn.modules.block.C2f [64, 64, 1, True] \n",
" 3 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n",
" 4 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n",
" 5 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n",
" 6 -1 2 788480 ultralytics.nn.modules.block.C2f [256, 256, 2, True] \n",
" 7 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] \n",
" 8 -1 1 1838080 ultralytics.nn.modules.block.C2f [512, 512, 1, True] \n",
" 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] \n",
" 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 12 -1 1 837508 ultralytics.nn.modules.block.C2fAttn [768, 256, 1, 128, 4] \n",
" 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 15 -1 1 226242 ultralytics.nn.modules.block.C2fAttn [384, 128, 1, 64, 2] \n",
" 16 15 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n",
" 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 18 -1 1 739204 ultralytics.nn.modules.block.C2fAttn [384, 256, 1, 128, 4] \n",
" 19 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] \n",
" 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 21 -1 1 2821896 ultralytics.nn.modules.block.C2fAttn [768, 512, 1, 256, 8] \n",
" 22 [15, 18, 21] 1 2317270 ultralytics.nn.modules.head.WorldDetect [80, 512, True, [128, 256, 512]]\n",
"YOLOv8s-worldv2 summary: 256 layers, 12,759,880 parameters, 12,759,864 gradients, 51.0 GFLOPs\n",
"\n",
"Transferred 409/412 items from pretrained weights\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs\\detect\\train', view at http://localhost:6006/\n",
"Freezing layer 'model.22.dfl.conv.weight'\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017... 99388 images, 0 backgrounds, 0 corrupt: 100%|██████████| 99388/99388 [01:45<00:00, 945.84it/s] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017.cache\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mScanning C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017... 19626 images, 0 backgrounds, 0 corrupt: 100%|██████████| 19626/19626 [00:20<00:00, 940.54it/s] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\labels\\train2017.cache\n",
"Plotting labels to runs\\detect\\train\\labels.jpg... \n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01, momentum=0.9) with parameter groups 64 weight(decay=0.0), 75 weight(decay=0.0005), 81 bias(decay=0.0)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\User\\anaconda3\\envs\\detr\\lib\\site-packages\\torch\\nn\\functional.py:5504: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\transformers\\cuda\\sdp_utils.cpp:455.)\n",
" attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mmodel graph visualization added \n",
"Image sizes 640 train, 640 val\n",
"Using 8 dataloader workers\n",
"Logging results to \u001b[1mruns\\detect\\train\u001b[0m\n",
"Starting training for 10 epochs...\n",
"Closing dataloader mosaic\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 1/10 8.95G 1.246 2.038 1.233 94 640: 100%|██████████| 6212/6212 [1:04:12<00:00, 1.61it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [29:50<00:00, 2.92s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.436 0.107 0.0633 0.0462\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 2/10 10.1G 1.284 1.929 1.236 187 640: 100%|██████████| 6212/6212 [1:04:46<00:00, 1.60it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [38:09<00:00, 3.73s/it] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.504 0.104 0.0644 0.0467\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 3/10 12.9G 1.361 2.051 1.274 110 640: 100%|██████████| 6212/6212 [1:03:48<00:00, 1.62it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:24<00:00, 2.78s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.547 0.0981 0.0604 0.0438\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 4/10 12.9G 1.384 2.076 1.289 122 640: 100%|██████████| 6212/6212 [1:03:56<00:00, 1.62it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:46<00:00, 2.81s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.543 0.105 0.0645 0.0469\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 5/10 11.4G 1.328 1.943 1.257 98 640: 100%|██████████| 6212/6212 [1:02:17<00:00, 1.66it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:50<00:00, 2.82s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.558 0.107 0.0712 0.0523\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 6/10 14.6G 1.283 1.836 1.232 191 640: 100%|██████████| 6212/6212 [1:05:51<00:00, 1.57it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [25:37<00:00, 2.50s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.547 0.116 0.0761 0.0561\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 7/10 11.8G 1.242 1.748 1.208 134 640: 100%|██████████| 6212/6212 [1:07:42<00:00, 1.53it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [27:45<00:00, 2.71s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.521 0.121 0.08 0.0593\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 8/10 14.9G 1.204 1.664 1.186 238 640: 100%|██████████| 6212/6212 [1:05:31<00:00, 1.58it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [27:03<00:00, 2.64s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.517 0.124 0.0826 0.0615\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 9/10 12.7G 1.168 1.583 1.165 162 640: 100%|██████████| 6212/6212 [1:02:55<00:00, 1.65it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [28:44<00:00, 2.81s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.514 0.126 0.0845 0.0631\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 10/10 10.9G 1.133 1.505 1.146 93 640: 100%|██████████| 6212/6212 [1:06:28<00:00, 1.56it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [34:24<00:00, 3.36s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.517 0.125 0.0863 0.0646\n",
"\n",
"10 epochs completed in 15.840 hours.\n",
"Optimizer stripped from runs\\detect\\train\\weights\\last.pt, 27.0MB\n",
"Optimizer stripped from runs\\detect\\train\\weights\\best.pt, 27.0MB\n",
"\n",
"Validating runs\\detect\\train\\weights\\best.pt...\n",
"Ultralytics YOLOv8.2.56 Python-3.9.19 torch-2.3.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4070, 12282MiB)\n",
"YOLOv8s-worldv2 summary (fused): 195 layers, 12,749,288 parameters, 0 gradients, 315.7 GFLOPs\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 614/614 [05:44<00:00, 1.78it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" all 19626 244707 0.515 0.126 0.0862 0.0645\n",
" aerosol can/spray can 8 11 0 0 0.0524 0.0327\n",
" air conditioner 65 146 0.191 0.137 0.0838 0.0581\n",
" airplane/aeroplane 349 619 0.596 0.661 0.597 0.481\n",
" alarm clock 25 60 0.0851 0.0833 0.0503 0.0413\n",
"alcohol/alcoholic beverage 14 149 1 0 0.00533 0.00455\n",
" alligator/gator 1 1 1 0 0 0\n",
" almond 14 302 0.0396 0.0199 0.0181 0.0139\n",
" ambulance 2 6 1 0 0 0\n",
" amplifier 2 3 1 0 0.12 0.0732\n",
" anklet/ankle bracelet 7 8 1 0 0.0127 0.00971\n",
"antenna/aerial/transmitting aerial 93 202 0.0764 0.0248 0.0166 0.0078\n",
" apple 210 3116 0.409 0.471 0.365 0.274\n",
" applesauce 1 3 1 0 0 0\n",
" apron 98 161 0.287 0.224 0.179 0.102\n",
" aquarium/fish tank 10 10 1 0 0 0\n",
" armband 8 15 0 0 0.0238 0.0157\n",
" armchair 111 207 0.176 0.546 0.241 0.212\n",
" armoire 1 1 1 0 0.995 0.895\n",
" armor/armour 2 5 0 0 0 0\n",
" artichoke 3 32 0.229 0.375 0.284 0.185\n",
"trash can/garbage can/wastebin/dustbin/trash barrel/trash bin 389 548 0.184 0.52 0.259 0.209\n",
" ashtray 30 51 0.485 0.0375 0.0627 0.047\n",
" asparagus 15 150 0.0743 0.08 0.0224 0.0139\n",
"atomizer/atomiser/spray/sprayer/nebulizer/nebuliser 9 11 1 0 0 0\n",
" avocado 24 152 0.0868 0.118 0.0319 0.0233\n",
" award/accolade 13 51 1 0 0 0\n",
" awning 273 888 0.213 0.236 0.132 0.0853\n",
" ax/axe 2 5 1 0 0 0\n",
"baby buggy/baby carriage/perambulator/pram/stroller 67 78 0.389 0.167 0.178 0.118\n",
" basketball backboard 7 7 1 0 0 0\n",
"backpack/knapsack/packsack/rucksack/haversack 397 947 0.262 0.15 0.114 0.0649\n",
"handbag/purse/pocketbook 367 713 0.299 0.191 0.12 0.0804\n",
"suitcase/baggage/luggage 315 1791 0.483 0.458 0.42 0.287\n",
" bagel/beigel 13 68 0 0 0.0266 0.0192\n",
" ball 51 107 0.0759 0.178 0.0703 0.0625\n",
" balloon 31 272 0.316 0.412 0.363 0.286\n",
" bamboo 12 57 1 0 0.00163 0.000774\n",
" banana 338 9156 0.635 0.446 0.506 0.315\n",
" bandage 9 17 1 0 0.00683 0.0033\n",
" bandanna/bandana 24 49 0 0 0.00221 0.00139\n",
" banner/streamer 269 1163 0.152 0.181 0.0744 0.0549\n",
" barbell 1 1 1 0 0 0\n",
" barrel/cask 20 51 0.0638 0.137 0.0152 0.013\n",
" barrette 9 12 0 0 0.00596 0.00322\n",
"barrow/garden cart/lawn cart/wheelbarrow 3 3 0 0 0 0\n",
" baseball base 63 78 0.225 0.513 0.213 0.15\n",
" baseball 142 201 0.275 0.393 0.259 0.18\n",
" baseball bat 342 522 0.485 0.446 0.386 0.225\n",
"baseball cap/jockey cap/golf cap 350 1551 0.181 0.375 0.143 0.0939\n",
"baseball glove/baseball mitt 311 477 0.564 0.579 0.548 0.382\n",
" basket/handbasket 311 731 0.247 0.327 0.199 0.133\n",
" basketball 9 14 0 0 0.0096 0.00754\n",
"bass horn/sousaphone/tuba 1 3 1 0 0 0\n",
" bat/bat animal 1 2 1 0 0 0\n",
" bath mat 52 63 0.18 0.683 0.413 0.383\n",
" bath towel 80 274 0.245 0.46 0.233 0.183\n",
" bathrobe 7 10 0.123 0.3 0.0493 0.0387\n",
" bathtub/bathing tub 157 170 0.378 0.682 0.565 0.464\n",
" batter/batter food 1 2 1 0 0 0\n",
" battery 9 19 1 0 0 0\n",
" beachball 3 7 0 0 0.0423 0.0336\n",
" bead 11 164 0 0 0.00176 0.00151\n",
" bean curd/tofu 10 151 0.239 0.0397 0.0505 0.0428\n",
" beanbag 8 16 1 0 0.0267 0.0265\n",
" beanie/beany 92 298 0.0979 0.226 0.0604 0.0396\n",
" bear 130 223 0.464 0.578 0.523 0.465\n",
" bed 363 435 0.486 0.598 0.513 0.354\n",
"bedspread/bedcover/bed covering/counterpane/spread 17 19 0.0669 0.579 0.061 0.0463\n",
" cow 266 1663 0.37 0.603 0.438 0.318\n",
"beef/beef food/boeuf/boeuf food 26 293 0.128 0.109 0.0481 0.026\n",
" beer bottle 66 215 0.104 0.335 0.073 0.0619\n",
" beer can 12 63 0 0 0.00992 0.00725\n",
" bell 39 75 0.223 0.04 0.0403 0.0307\n",
" bell pepper/capsicum 54 799 0.108 0.0864 0.0441 0.0272\n",
" belt 368 676 0.368 0.344 0.25 0.127\n",
" belt buckle 53 83 0.0393 0.012 0.00353 0.0021\n",
" bench 404 807 0.291 0.264 0.187 0.142\n",
" beret 1 2 1 0 0 0\n",
" bib 12 12 0 0 0.114 0.0819\n",
" Bible 1 1 1 0 0 0\n",
"bicycle/bike/bike bicycle 387 969 0.445 0.375 0.325 0.214\n",
" visor/vizor 87 166 0.174 0.283 0.131 0.103\n",
" billboard 37 270 0.118 0.0667 0.0373 0.0268\n",
" binder/ring-binder 21 47 0 0 0.00809 0.00603\n",
"binoculars/field glasses/opera glasses 2 2 1 0 0 0\n",
" bird 368 2011 0.458 0.356 0.306 0.198\n",
" birdfeeder 4 8 1 0 0.0118 0.00588\n",
" birdbath 3 3 1 0 0.0313 0.0251\n",
" birdcage 7 34 0.0458 0.0294 0.0385 0.0368\n",
" birdhouse 3 17 1 0 0 0\n",
" birthday cake 49 74 0.221 0.405 0.214 0.154\n",
" pirate flag 1 7 1 0 0 0\n",
" black sheep 7 22 0 0 0.045 0.0347\n",
" blackberry 10 61 0.252 0.232 0.173 0.139\n",
" blackboard/chalkboard 25 37 0.342 0.351 0.222 0.184\n",
" blanket 379 646 0.22 0.229 0.133 0.0917\n",
"blazer/sport jacket/sport coat/sports jacket/sports coat 10 50 0.0521 0.02 0.0117 0.0116\n",
"blender/liquidizer/liquidiser 54 57 0.242 0.526 0.378 0.316\n",
" blinker/flasher 49 238 0.111 0.0756 0.035 0.0248\n",
" blouse 51 99 0.0465 0.0707 0.0238 0.0169\n",
" blueberry 27 713 0.263 0.265 0.154 0.0945\n",
" gameboard 3 4 1 0 0 0\n",
" boat/ship/ship boat 362 1893 0.541 0.247 0.288 0.161\n",
" bobbin/spool/reel 10 15 1 0 0 0\n",
" bobby pin/hairgrip 1 1 1 0 0 0\n",
"boiled egg/coddled egg 6 9 0 0 0.0163 0.0163\n",
"bolo tie/bolo/bola tie/bola 1 1 1 0 0 0\n",
" deadbolt 7 8 1 0 0.0127 0.00919\n",
" bolt 249 1953 0.142 0.0364 0.0243 0.0109\n",
" bonnet 4 6 1 0 0 0\n",
" book 383 7022 0.37 0.17 0.195 0.0877\n",
" bookcase 14 17 0.0969 0.647 0.134 0.106\n",
"booklet/brochure/leaflet/pamphlet 14 54 0 0 0.00297 0.00194\n",
" bookmark/bookmarker 1 1 1 0 0 0\n",
"boom microphone/microphone boom 2 2 1 0 0 0\n",
" boot 258 750 0.235 0.305 0.19 0.134\n",
" bottle 381 1766 0.255 0.403 0.183 0.131\n",
" bottle opener 3 3 1 0 0 0\n",
" bouquet 3 6 0 0 0.00733 0.00663\n",
" bow/bow weapon 2 3 0 0 0 0\n",
"bow/bow decorative ribbons 92 186 0.452 0.118 0.116 0.0901\n",
" bow-tie/bowtie 42 68 0.203 0.324 0.181 0.13\n",
" bowl 366 940 0.215 0.499 0.237 0.199\n",
"bowler hat/bowler/derby hat/derby/plug hat 7 22 0 0 0.00585 0.00496\n",
" bowling ball 2 9 0 0 0 0\n",
" box 287 1389 0.152 0.168 0.0825 0.0533\n",
" suspenders 15 26 1 0 0.0124 0.00525\n",
" bracelet/bangle 309 582 0.228 0.285 0.124 0.0679\n",
" brass plaque 1 3 1 0 0 0\n",
" brassiere/bra/bandeau 20 22 1 0 0.0169 0.012\n",
" bread-bin/breadbox 5 5 1 0 0 0\n",
" bread 231 866 0.156 0.292 0.12 0.0877\n",
"bridal gown/wedding gown/wedding dress 23 23 0.289 0.388 0.248 0.195\n",
" briefcase 11 14 0.519 0.0714 0.0911 0.0891\n",
" broccoli 278 2677 0.491 0.459 0.448 0.291\n",
" broach 1 1 1 0 0 0\n",
" broom 19 20 0 0 0.0214 0.0174\n",
" brownie 6 20 0 0 0.00778 0.00661\n",
" brussels sprouts 7 86 0.108 0.163 0.0448 0.0338\n",
" bubble gum 1 1 1 0 0 0\n",
" bucket/pail 144 273 0.152 0.333 0.138 0.111\n",
" horse buggy 6 18 0 0 0.0278 0.0193\n",
" horned cow 14 51 0 0 0.0264 0.0186\n",
" bulldozer/dozer 1 1 1 0 0 0\n",
" bullet train 21 25 0.288 0.24 0.242 0.216\n",
"bulletin board/notice board 10 11 0 0 0.0388 0.0359\n",
" bulletproof vest 1 2 1 0 0.498 0.398\n",
" bullhorn/megaphone 2 2 1 0 0 0\n",
" bun/roll 96 300 0.166 0.197 0.113 0.089\n",
" bunk bed 2 2 0 0 0.0783 0.0705\n",
" buoy 44 315 0.325 0.117 0.0815 0.043\n",
" burrito 2 3 1 0 0 0\n",
"bus/bus vehicle/autobus/charabanc/double-decker/motorbus/motorcoach 358 613 0.338 0.724 0.461 0.397\n",
" business card 6 11 0 0 0.0105 0.00999\n",
" butter 42 78 0.205 0.0256 0.0453 0.0274\n",
" butterfly 13 116 1 0 0.000973 0.000673\n",
" button 329 1452 0.304 0.17 0.116 0.0605\n",
"cab/cab taxi/taxi/taxicab 33 68 0.163 0.026 0.0382 0.0279\n",
" cabin car/caboose 3 5 1 0 0.00577 0.00326\n",
" cabinet 352 1617 0.271 0.437 0.228 0.161\n",
" cake 148 617 0.256 0.212 0.125 0.09\n",
" calculator 22 27 0.413 0.037 0.0753 0.0715\n",
" calendar 42 49 0.0564 0.0408 0.0209 0.0167\n",
" calf 15 55 0 0 0.0513 0.042\n",
" camcorder 6 12 1 0 0 0\n",
" camel 3 3 1 0 0.00581 0.00581\n",
" camera 253 493 0.291 0.0872 0.0656 0.0383\n",
" camera lens 14 45 0 0 0.00263 0.00181\n",
"camper/camper vehicle/camping bus/motor home 8 15 1 0 0 0\n",
" can/tin can 83 343 0.127 0.117 0.0526 0.0421\n",
" can opener/tin opener 4 4 1 0 0.0305 0.0275\n",
" candle/candlestick 203 616 0.257 0.185 0.13 0.0773\n",
" candle holder 31 67 0.0619 0.0448 0.0135 0.00717\n",
" candy bar 2 7 0 0 0 0\n",
" candy cane 2 3 1 0 0 0\n",
" walking cane 16 20 1 0 0.143 0.087\n",
" canister/canister 7 25 0 0 0.0119 0.00878\n",
" canoe 12 17 0 0 0.0329 0.0257\n",
" cantaloup/cantaloupe 3 6 1 0 0 0\n",
" cap/cap headwear 5 8 0 0 0.000556 0.000401\n",
"bottle cap/cap/cap container lid 201 980 0.275 0.339 0.194 0.133\n",
" cape 7 11 1 0 0.017 0.017\n",
"cappuccino/coffee cappuccino 17 21 0.0615 0.333 0.0453 0.0263\n",
"car/car automobile/auto/auto automobile/automobile 364 2349 0.18 0.363 0.11 0.071\n",
"railcar/railcar part of a train/railway car/railway car part of a train/railroad car/railroad car part of a train 33 190 0.085 0.121 0.0509 0.0327\n",
" elevator car 1 1 1 0 0 0\n",
" identity card 5 9 1 0 0 0\n",
" card 11 37 0.0793 0.027 0.0159 0.0137\n",
" cardigan 1 1 1 0 0.00375 0.00338\n",
"cargo ship/cargo vessel 2 2 1 0 0 0\n",
" horse carriage 8 8 0.0878 0.25 0.109 0.07\n",
" carrot 247 3762 0.476 0.379 0.363 0.243\n",
" tote bag 28 66 0.156 0.0152 0.034 0.0288\n",
" cart 10 29 0.237 0.069 0.0522 0.0451\n",
" carton 18 36 0 0 0.0356 0.0289\n",
"cash register/register/register for cash transactions 6 7 0 0 0 0\n",
" casserole 4 10 0 0 0 0\n",
" cassette 1 3 1 0 0 0\n",
"cast/plaster cast/plaster bandage 2 4 1 0 0 0\n",
" cat 376 482 0.334 0.77 0.428 0.362\n",
" cauliflower 20 97 0.0861 0.227 0.0831 0.0692\n",
"cayenne/cayenne spice/cayenne pepper/cayenne pepper spice/red pepper/red pepper spice 3 22 1 0 0 0\n",
" CD player 5 9 1 0 0.00364 0.00286\n",
" celery 21 277 0.228 0.0866 0.0548 0.04\n",
"cellular telephone/cellular phone/cellphone/mobile phone/smart phone 385 575 0.314 0.43 0.289 0.229\n",
" chair 392 2368 0.157 0.185 0.07 0.0443\n",
" chandelier 48 66 0.217 0.606 0.378 0.293\n",
" chap 2 2 0 0 0 0\n",
" checkerboard 1 1 1 0 0 0\n",
" cherry 18 206 0.0181 0.00971 0.00507 0.00335\n",
" chessboard 1 2 1 0 0 0\n",
"chicken/chicken animal 6 16 0 0 0.00208 0.00177\n",
" chickpea/garbanzo 2 30 0.523 0.133 0.185 0.163\n",
"chili/chili vegetable/chili pepper/chili pepper vegetable/chilli/chilli vegetable/chilly/chilly vegetable/chile/chile vegetable 3 8 1 0 0 0\n",
"crisp/crisp potato chip/potato chip 8 101 1 0 0.00718 0.0068\n",
" chocolate bar 3 17 1 0 0.0104 0.00977\n",
" chocolate cake 5 6 0 0 0.031 0.0281\n",
" chocolate mousse 1 1 1 0 0 0\n",
"choker/collar/neckband 161 241 0.109 0.206 0.0585 0.0362\n",
"chopping board/cutting board/chopping block 122 150 0.158 0.353 0.197 0.146\n",
" chopstick 32 90 0.0516 0.0667 0.0165 0.0111\n",
" Christmas tree 53 72 0.45 0.389 0.361 0.289\n",
" slide 19 30 1 0 0.0656 0.0273\n",
" cigarette 38 51 0.889 0.0196 0.0255 0.0176\n",
"cigarette case/cigarette pack 4 6 1 0 0 0\n",
" cistern/water tank 131 168 0.26 0.607 0.3 0.246\n",
" clasp 9 31 1 0 0 0\n",
"cleansing agent/cleanser/cleaner 11 41 0 0 0.0173 0.0141\n",
" clementine 1 1 1 0 0.00446 0.00446\n",
" clip 14 25 1 0 0 0\n",
" clipboard 8 15 0 0 0 0\n",
"clock/timepiece/timekeeper 392 622 0.327 0.608 0.327 0.248\n",
" clock tower 197 204 0.379 0.833 0.611 0.5\n",
"clothes hamper/laundry basket/clothes basket 7 8 0 0 0.00995 0.00813\n",
"clothespin/clothes peg 4 35 1 0 0 0\n",
" coaster 43 87 0.18 0.31 0.156 0.121\n",
" coat 133 702 0.0866 0.264 0.0651 0.0476\n",
"coat hanger/clothes hanger/dress hanger 18 117 1 0 0 0\n",
" coatrack/hatrack 2 2 1 0 0.00695 0.00695\n",
" cock/rooster 8 15 1 0 0.0265 0.0179\n",
"cocoa/cocoa beverage/hot chocolate/hot chocolate beverage/drinking chocolate 2 2 1 0 0 0\n",
" coconut/cocoanut 5 208 0 0 0.012 0.0104\n",
"coffee maker/coffee machine 46 49 0.253 0.653 0.436 0.353\n",
"coffee table/cocktail table 142 185 0.279 0.697 0.354 0.3\n",
" coffeepot 6 9 0 0 0 0\n",
" coin 13 97 0.774 0.0206 0.113 0.0923\n",
" colander/cullender 2 4 0 0 0.0277 0.0225\n",
" coleslaw/slaw 5 10 1 0 0.0206 0.0128\n",
"coloring material/colouring material 1 9 1 0 0 0\n",
"pacifier/teething ring 13 15 1 0 0.036 0.0288\n",
" comic book 1 8 1 0 0 0\n",
" compass 1 1 1 0 0 0\n",
"computer keyboard/keyboard/keyboard computer 379 562 0.456 0.774 0.57 0.453\n",
" condiment 108 496 0.138 0.101 0.0496 0.0347\n",
" cone/traffic cone 180 707 0.627 0.392 0.412 0.259\n",
" control/controller 157 440 0.278 0.23 0.137 0.0769\n",
"cookie/cooky/biscuit/biscuit cookie 26 255 0.0498 0.0275 0.0144 0.011\n",
"cooler/cooler for food/ice chest 63 113 0.156 0.0619 0.0405 0.0312\n",
"cork/cork bottle plug/bottle cork 20 71 0.403 0.0423 0.054 0.0471\n",
" corkboard 1 1 1 0 0 0\n",
"corkscrew/bottle screw 6 6 1 0 0 0\n",
"edible corn/corn/maize 34 527 0.224 0.104 0.0788 0.0511\n",
" cornbread 2 6 1 0 0 0\n",
" cornet/horn/trumpet 10 28 1 0 0 0\n",
"cornice/valance/valance board/pelmet 15 19 0.0913 0.474 0.134 0.12\n",
" corset/girdle 2 2 1 0 0.0368 0.0368\n",
" costume 7 10 1 0 0.0374 0.0362\n",
"cougar/puma/catamount/mountain lion/panther 1 1 0 0 0 0\n",
" coverall 1 1 1 0 0 0\n",
" cowbell 4 6 1 0 0 0\n",
"cowboy hat/ten-gallon hat 41 102 0.0844 0.157 0.0596 0.0478\n",
" crab/crab animal 4 7 1 0 0 0\n",
" cracker 14 112 1 0 0.00969 0.00701\n",
"crape/crepe/French pancake 2 4 1 0 0 0\n",
" crate 50 403 0.161 0.181 0.081 0.0494\n",
" crayon/wax crayon 4 36 1 0 0 0\n",
" cream pitcher 2 10 0 0 0 0\n",
"crescent roll/croissant 8 33 1 0 0.00298 0.00298\n",
" crib/cot 6 6 0 0 0.0673 0.0459\n",
"crock pot/earthenware jar 6 7 0.0378 0.286 0.16 0.114\n",
" crossbar 155 1036 0.0598 0.00193 0.00775 0.00398\n",
" crouton 3 32 0 0 0.00508 0.00274\n",
" crow 4 6 1 0 0.086 0.0807\n",
" crown 16 34 1 0 0.00301 0.00281\n",
" crucifix 7 8 0.0235 0.125 0.00821 0.00742\n",
"cruise ship/cruise liner 6 7 0 0 0.0551 0.02\n",
"police cruiser/patrol car/police car/squad car 10 13 1 0 0.0223 0.0171\n",
" crumb 40 608 0.0888 0.0674 0.0278 0.0157\n",
" crutch 2 3 1 0 0 0\n",
" cub/cub animal 9 13 0.896 0.0769 0.135 0.132\n",
" cube/square block 1 7 1 0 0 0\n",
" cucumber/cuke 54 453 0.174 0.124 0.0698 0.0556\n",
" cufflink 4 5 1 0 0 0\n",
" cup 284 834 0.137 0.333 0.105 0.0837\n",
" trophy cup 6 24 1 0 0 0\n",
" cupboard/closet 48 329 0.0644 0.201 0.0531 0.0375\n",
" cupcake 43 609 0.432 0.264 0.274 0.176\n",
"hair curler/hair roller/hair crimper 2 11 1 0 0 0\n",
" curling iron 1 1 1 0 0 0\n",
" curtain/drapery 364 976 0.205 0.352 0.182 0.136\n",
" cushion 212 1303 0.182 0.519 0.191 0.149\n",
" cylinder 1 2 1 0 0 0\n",
" dartboard 1 1 1 0 0 0\n",
" date/date fruit 1 16 1 0 0 0\n",
"deck chair/beach chair 40 289 0.375 0.253 0.204 0.107\n",
" deer/cervid 9 33 0 0 0.0173 0.0132\n",
" dental floss/floss 1 1 1 0 0.0553 0.0497\n",
" desk 248 360 0.24 0.492 0.263 0.19\n",
" detergent 3 3 1 0 0 0\n",
" diaper 11 11 1 0 0.00222 0.00222\n",
" diary/journal 1 1 1 0 0 0\n",
" die/dice 5 16 1 0 0 0\n",
" dinghy/dory/rowboat 3 13 0 0 0.00593 0.00375\n",
" dining table 70 107 0.0717 0.0935 0.0353 0.0254\n",
" tux/tuxedo 1 1 1 0 0 0\n",
" dish 21 77 0 0 0.0158 0.0126\n",
" dish antenna 11 34 0 0 0.0105 0.00815\n",
" dishtowel/tea towel 25 32 0.0522 0.156 0.0363 0.0293\n",
"dishwasher/dishwashing machine 73 74 0.378 0.757 0.553 0.47\n",
" dispenser 44 96 0.123 0.292 0.0935 0.077\n",
" Dixie cup/paper cup 19 51 0.0538 0.098 0.0364 0.0262\n",
" dog 379 531 0.301 0.606 0.333 0.276\n",
" dog collar 111 156 0.199 0.199 0.105 0.0576\n",
" doll 36 67 0.385 0.0149 0.0332 0.0245\n",
"dollar/dollar bill/one dollar bill 1 1 1 0 0 0\n",
" dolphin 1 1 1 0 0 0\n",
" domestic ass/donkey 7 25 1 0 0 0\n",
" doorknob/doorhandle 345 770 0.186 0.155 0.0991 0.0632\n",
" doormat/welcome mat 22 28 0.0222 0.0357 0.0206 0.018\n",
" doughnut/donut 167 2562 0.419 0.602 0.473 0.376\n",
" dragonfly 2 23 1 0 0 0\n",
" drawer 363 1430 0.293 0.678 0.414 0.322\n",
"underdrawers/boxers/boxershorts 4 5 1 0 0 0\n",
" dress/frock 284 619 0.271 0.328 0.238 0.181\n",
"dress hat/high hat/opera hat/silk hat/top hat 10 19 0 0 0.00427 0.00357\n",
" dress suit 13 23 0.0425 0.435 0.0399 0.0354\n",
" dresser 27 39 0.161 0.462 0.216 0.19\n",
" drill 2 2 1 0 0 0\n",
" dropper/eye dropper 2 2 1 0 0 0\n",
"drum/drum musical instrument 4 13 1 0 0 0\n",
" drumstick 2 3 1 0 0 0\n",
" duck 30 134 0.0882 0.097 0.031 0.0192\n",
" duct tape 3 6 1 0 0 0\n",
"duffel bag/duffle bag/duffel/duffle 41 94 0.0832 0.255 0.0437 0.0313\n",
" dumbbell 2 4 1 0 0 0\n",
" dumpster 15 22 0.112 0.0455 0.0313 0.0282\n",
" dustpan 3 3 1 0 0 0\n",
" eagle 6 6 1 0 0.185 0.185\n",
"earphone/earpiece/headphone 107 143 0.162 0.0559 0.0367 0.0248\n",
" earplug 2 4 1 0 0 0\n",
" earring 363 544 0.423 0.105 0.0975 0.0368\n",
" easel 5 10 0 0 0.00504 0.00231\n",
" eclair 1 1 1 0 0.0117 0.0117\n",
" egg/eggs 43 189 0.288 0.118 0.11 0.0986\n",
" egg roll/spring roll 5 28 1 0 0.0186 0.0146\n",
"egg yolk/yolk/yolk egg 10 22 0.113 0.182 0.144 0.127\n",
" eggbeater/eggwhisk 13 18 1 0 0 0\n",
" eggplant/aubergine 4 7 1 0 0.00272 0.00136\n",
" refrigerator 311 406 0.548 0.7 0.665 0.562\n",
" elephant 364 1013 0.528 0.785 0.759 0.628\n",
" elk/moose 4 23 1 0 0.00281 0.00195\n",
" envelope 19 56 0 0 0.00497 0.00381\n",
" eraser 8 10 1 0 0.00219 0.00219\n",
" eyepatch 1 1 1 0 0 0\n",
" falcon 1 1 1 0 0 0\n",
" fan 137 156 0.333 0.429 0.355 0.241\n",
" faucet/spigot/tap 374 594 0.398 0.476 0.348 0.237\n",
" ferret 1 1 1 0 0 0\n",
" Ferris wheel 9 9 1 0 0.148 0.126\n",
" ferry/ferryboat 3 13 1 0 0.00142 0.00142\n",
" fig/fig fruit 2 12 1 0 0 0\n",
"fighter jet/fighter aircraft/attack aircraft 15 41 1 0 0.0748 0.0587\n",
" figurine 30 168 0.105 0.131 0.0443 0.0278\n",
"file cabinet/filing cabinet 9 14 1 0 0 0\n",
"fire alarm/smoke alarm 36 40 0.149 0.15 0.134 0.114\n",
"fire engine/fire truck 25 42 0.274 0.429 0.33 0.243\n",
"fire extinguisher/extinguisher 31 46 0.613 0.152 0.234 0.146\n",
" fire hose 10 16 1 0 0.0467 0.0432\n",
" fireplace 102 103 0.471 0.466 0.406 0.304\n",
"fireplug/fire hydrant/hydrant 259 279 0.69 0.783 0.78 0.66\n",
" fish 23 92 0 0 0.000912 0.000583\n",
" fish/fish food 3 7 0 0 0 0\n",
"fishbowl/goldfish bowl 1 1 0 0 0 0\n",
"fishing rod/fishing pole 7 17 1 0 0.00849 0.00557\n",
" flag 390 1248 0.313 0.212 0.154 0.0938\n",
" flagpole/flagstaff 70 189 1 0 0.0246 0.012\n",
" flamingo 4 202 0 0 0.00347 0.000664\n",
" flannel 2 3 1 0 0 0\n",
" flap 6 15 1 0 0.000242 0.000112\n",
" flash/flashbulb 2 2 1 0 0 0\n",
" flashlight/torch 6 7 1 0 0 0\n",
"flip-flop/flip-flop sandal 50 139 0.163 0.245 0.105 0.0723\n",
"flipper/flipper footwear/fin/fin footwear 2 2 1 0 0 0\n",
"flower arrangement/floral arrangement 377 908 0.283 0.302 0.195 0.122\n",
"flute glass/champagne flute 6 11 0.202 0.0909 0.0632 0.06\n",
" foal 4 4 1 0 0.0327 0.0301\n",
" folding chair 12 28 0 0 0.0102 0.00845\n",
" food processor 4 4 0 0 0.0844 0.076\n",
"football/football American 6 7 1 0 0 0\n",
" footstool/footrest 5 8 0.112 0.5 0.105 0.105\n",
" fork 359 652 0.278 0.316 0.224 0.164\n",
" forklift 4 4 1 0 0 0\n",
" freight car 5 71 0 0 0.0396 0.0248\n",
" French toast 2 7 1 0 0 0\n",
"freshener/air freshener 3 3 1 0 0 0\n",
" frisbee 334 453 0.512 0.762 0.708 0.608\n",
" frog/toad/toad frog 7 56 1 0 0.0255 0.00656\n",
" fruit juice 1 14 1 0 0 0\n",
"frying pan/frypan/skillet 19 37 0.0766 0.27 0.0643 0.0463\n",
" funnel 2 2 1 0 0 0\n",
" futon 4 5 1 0 0 0\n",
" garbage 4 30 1 0 0 0\n",
" garbage truck 3 6 0.181 0.167 0.0777 0.076\n",
" garden hose 8 8 1 0 0.00857 0.00429\n",
" gargle/mouthwash 3 5 1 0 0 0\n",
" gargoyle 2 12 1 0 0 0\n",
" garlic/ail 17 213 0.0937 0.00939 0.0179 0.0148\n",
"gasmask/respirator/gas helmet 1 1 1 0 0.0262 0.0183\n",
" gazelle 6 20 0.286 0.05 0.128 0.0928\n",
" gelatin/jelly 4 8 1 0 0 0\n",
"giant panda/panda/panda bear 12 12 0 0 0.00447 0.00332\n",
" gift wrap 11 61 1 0 0.00435 0.003\n",
" ginger/gingerroot 4 13 1 0 0 0\n",
" giraffe 358 756 0.789 0.837 0.834 0.7\n",
"cincture/sash/waistband/waistcloth 3 3 1 0 0 0\n",
"glass/glass drink container/drinking glass 370 1205 0.225 0.482 0.259 0.216\n",
" globe 13 16 1 0 0.0108 0.00937\n",
" glove 381 1131 0.25 0.329 0.159 0.0908\n",
" goat 20 132 0.0252 0.0152 0.00899 0.00641\n",
" goggles 327 619 0.541 0.421 0.443 0.244\n",
" golf club/golf-club 2 9 1 0 0 0\n",
" golfcart 4 7 1 0 0.0918 0.0827\n",
" gondola/gondola boat 1 1 1 0 0 0\n",
" goose 4 45 0.0296 0.0444 0.0164 0.0134\n",
" gourd 1 16 0 0 0 0\n",
" grape 45 1745 0.162 0.138 0.0668 0.0467\n",
" grater 9 10 0.1 0.1 0.04 0.0337\n",
"gravestone/headstone/tombstone 7 47 0.0845 0.106 0.093 0.0715\n",
"gravy boat/gravy holder 2 3 1 0 0 0\n",
" green bean 28 620 0.117 0.079 0.0361 0.0217\n",
"green onion/spring onion/scallion 18 359 0.164 0.136 0.0657 0.0457\n",
" griddle 1 1 1 0 0 0\n",
"grill/grille/grillwork/radiator grille 53 90 0.122 0.244 0.117 0.09\n",
" grizzly/grizzly bear 6 11 0 0 0.0834 0.0786\n",
" grocery bag 3 4 0 0 0.0158 0.0154\n",
" guitar 35 52 0.179 0.0577 0.0461 0.0379\n",
" gull/seagull 18 170 0.102 0.153 0.046 0.0286\n",
" gun 3 4 1 0 0 0\n",
" hairbrush 21 28 0.057 0.0102 0.0182 0.0166\n",
" hairnet 3 6 1 0 0.1 0.0984\n",
" hairpin 5 7 1 0 0 0\n",
" ham/jambon/gammon 46 357 0.218 0.0728 0.0672 0.0441\n",
"hamburger/beefburger/burger 5 8 1 0 0.00574 0.00494\n",
" hammer 7 13 1 0 0 0\n",
" hammock 6 8 1 0 0 0\n",
" hamper 1 1 1 0 0 0\n",
" hair dryer 27 32 0 0 0.0119 0.00704\n",
"hand glass/hand mirror 2 2 1 0 0 0\n",
" hand towel/face towel 40 87 0.103 0.46 0.0797 0.0622\n",
"handcart/pushcart/hand truck 15 31 0.0188 0.0323 0.013 0.00828\n",
" handcuff 2 2 1 0 0 0\n",
" handkerchief 7 8 0.16 0.1 0.0773 0.0601\n",
" handle/grip/handgrip 394 1765 0.157 0.0827 0.0442 0.0242\n",
"handsaw/carpenter's saw 4 4 1 0 0 0\n",
"harmonium/organ/organ musical instrument/reed organ/reed organ musical instrument 2 2 1 0 0 0\n",
" hat 365 1357 0.107 0.209 0.0588 0.039\n",
" veil 9 9 1 0 0.0334 0.0307\n",
" headband 178 232 0.278 0.332 0.215 0.132\n",
" headboard 142 155 0.335 0.652 0.465 0.353\n",
" headlight/headlamp 369 1442 0.243 0.189 0.11 0.0595\n",
" headscarf 22 47 1 0 0.00423 0.00242\n",
" headset 3 4 0 0 0 0\n",
"headstall/headstall for horses/headpiece/headpiece for horses 10 16 0 0 0.00322 0.00123\n",
" heart 16 84 0.235 0.0238 0.0164 0.0134\n",
" heater/warmer 11 12 1 0 0.0022 0.0022\n",
" helicopter 8 9 0 0 0.0203 0.0108\n",
" helmet 371 884 0.186 0.438 0.159 0.106\n",
" heron 2 2 1 0 0.0152 0.0104\n",
"highchair/feeding chair 7 8 0.292 0.125 0.0844 0.0771\n",
" hinge 241 811 0.211 0.112 0.0749 0.0369\n",
" hippopotamus 4 7 1 0 0 0\n",
" hockey stick 2 2 1 0 0 0\n",
" hog/pig 16 31 1 0 0 0\n",
"home plate/home plate baseball/home base/home base baseball 86 88 0.251 0.477 0.21 0.14\n",
" honey 3 5 1 0 0.00332 0.00332\n",
"fume hood/exhaust hood 33 33 0.153 0.515 0.19 0.17\n",
" hook 44 200 0 0 0.00686 0.00407\n",
" horse 395 851 0.42 0.676 0.542 0.438\n",
" hose/hosepipe 53 101 0.109 0.0297 0.0135 0.006\n",
" hotplate 1 1 1 0 0 0\n",
" hot sauce 13 19 0 0 0.0233 0.0212\n",
" hummingbird 1 1 0 0 0.142 0.142\n",
" polar bear 28 36 0.371 0.722 0.558 0.504\n",
" icecream 6 15 1 0 0.00172 0.0014\n",
" popsicle 1 2 1 0 0 0\n",
" ice maker 7 8 1 0 0 0\n",
"igniter/ignitor/lighter 16 21 1 0 0 0\n",
" iPod 30 31 0.196 0.258 0.138 0.118\n",
"iron/iron for clothing/smoothing iron/smoothing iron for clothing 6 6 1 0 0 0\n",
" ironing board 4 5 1 0 0.0812 0.0731\n",
" jacket 398 1569 0.0989 0.333 0.0722 0.0503\n",
" jam 2 3 1 0 0 0\n",
" jar 62 304 0.169 0.391 0.182 0.14\n",
" jean/blue jean/denim 379 971 0.115 0.451 0.12 0.097\n",
" jeep/landrover 9 11 1 0 0.0103 0.00981\n",
"jersey/T-shirt/tee shirt 349 1392 0.0938 0.414 0.0855 0.0662\n",
"jet plane/jet-propelled plane 10 22 0 0 0.0233 0.0194\n",
" jewelry/jewellery 4 58 1 0 0 0\n",
" joystick 1 2 1 0 0 0\n",
" jumpsuit 1 1 1 0 0.00686 0.00618\n",
" kayak 6 13 1 0 0.00602 0.00288\n",
" keg 1 2 1 0 0 0\n",
" kennel/doghouse 1 2 0 0 0 0\n",
" kettle/boiler 22 31 0.19 0.226 0.124 0.103\n",
" key 43 104 1 0 0.00987 0.00541\n",
" kimono 3 7 0 0 0 0\n",
" kitchen sink 123 129 0.348 0.395 0.263 0.166\n",
" kitchen table 7 7 1 0 0 0\n",
" kite 335 1803 0.444 0.42 0.347 0.24\n",
" kitten/kitty 8 11 1 0 0.12 0.096\n",
" kiwi fruit 20 189 0.138 0.0159 0.0206 0.0157\n",
" knee pad 152 301 0.402 0.223 0.224 0.135\n",
" knife 368 735 0.224 0.269 0.16 0.115\n",
" knob 277 1483 0.335 0.354 0.245 0.133\n",
"knocker/knocker on a door/doorknocker 2 2 1 0 0.00224 0.00201\n",
" koala/koala bear 1 1 1 0 0 0\n",
"lab coat/laboratory coat 3 4 1 0 0.0099 0.0099\n",
" ladder 117 167 0.146 0.0299 0.0211 0.0124\n",
" ladle 17 42 0.0998 0.119 0.0441 0.0236\n",
"ladybug/ladybeetle/ladybird beetle 2 4 0.167 0.25 0.0493 0.0296\n",
" lamb/lamb animal 17 71 0.153 0.069 0.11 0.0944\n",
" lamb-chop/lambchop 1 3 1 0 0 0\n",
" lamp 382 854 0.294 0.409 0.24 0.183\n",
" lamppost 132 463 0.08 0.0367 0.0246 0.0134\n",
" lampshade 214 403 0.296 0.737 0.434 0.374\n",
" lantern 12 47 1 0 0.00424 0.00336\n",
" lanyard/laniard 84 226 0.182 0.111 0.056 0.028\n",
"laptop computer/notebook computer 412 551 0.454 0.724 0.517 0.45\n",
" lasagna/lasagne 1 1 1 0 0 0\n",
" latch 42 149 0 0 0.00536 0.00355\n",
" lawn mower 3 3 1 0 0 0\n",
" leather 1 1 1 0 0 0\n",
"legging/legging clothing/leging/leging clothing/leg covering 12 23 1 0 0.00112 0.000794\n",
" Lego/Lego set 9 168 1 0 0.00298 0.00298\n",
" legume 5 242 1 0 0.00168 0.00117\n",
" lemon 78 440 0.146 0.223 0.0885 0.0728\n",
" lettuce 116 859 0.214 0.0722 0.0665 0.0422\n",
"license plate/numberplate 340 761 0.277 0.288 0.137 0.0856\n",
"life buoy/lifesaver/life belt/life ring 32 78 0.0881 0.128 0.0365 0.0233\n",
" life jacket/life vest 35 84 0.244 0.157 0.115 0.0642\n",
" lightbulb 180 1135 0.139 0.102 0.0475 0.027\n",
" lime 24 201 0.139 0.224 0.0815 0.0644\n",
" limousine 2 2 1 0 0 0\n",
" lion 13 24 1 0 0.00389 0.00206\n",
" lip balm 2 4 0 0 0 0\n",
"liquor/spirits/hard liquor/liqueur/cordial 2 33 1 0 0.00146 0.00146\n",
" lizard 4 4 1 0 0 0\n",
" log 199 1105 0.214 0.106 0.0716 0.0461\n",
" lollipop 5 33 1 0 0 0\n",
"speaker/speaker stereo equipment 210 393 0.295 0.552 0.365 0.28\n",
" loveseat 11 14 1 0 0.141 0.14\n",
" machine gun 1 3 1 0 0 0\n",
" magazine 84 329 0.109 0.0409 0.0266 0.0122\n",
" magnet 67 1494 0.348 0.297 0.214 0.128\n",
" mail slot 4 4 1 0 0 0\n",
"mailbox/mailbox at home/letter box/letter box at home 22 45 1 0 0.0234 0.00935\n",
" mallet 4 13 1 0 0 0\n",
" mandarin orange 10 188 0.493 0.0851 0.193 0.17\n",
" manager/through 18 23 1 0 0 0\n",
" manhole 40 71 0.133 0.451 0.181 0.136\n",
" map 24 36 0.0703 0.111 0.0488 0.0439\n",
" marker 21 71 0.0182 0.0141 0.0222 0.0151\n",
" martini 1 1 1 0 0 0\n",
" mashed potato 15 34 0.202 0.0588 0.0742 0.068\n",
" mask/facemask 158 293 0.419 0.436 0.33 0.161\n",
" mast 68 586 0.286 0.00549 0.084 0.0271\n",
"mat/mat gym equipment/gym mat 4 10 1 0 0 0\n",
" matchbox 2 2 1 0 0.252 0.252\n",
" mattress 48 74 0.151 0.0541 0.0624 0.0413\n",
" measuring cup 12 15 0 0 0.0232 0.0217\n",
"measuring stick/ruler/ruler measuring stick/measuring rod 6 7 1 0 0.00296 0.00296\n",
" meatball 3 16 0.128 0.5 0.113 0.108\n",
" medicine 13 49 1 0 0.0323 0.0313\n",
" melon 4 38 0 0 0.0013 0.0013\n",
" microphone 60 90 0.0848 0.0066 0.0229 0.0127\n",
" microscope 2 2 1 0 0 0\n",
" microwave oven 181 191 0.39 0.791 0.691 0.559\n",
" milestone/milepost 1 1 1 0 0 0\n",
" milk 16 19 0.592 0.0526 0.0794 0.076\n",
" milkshake 1 1 1 0 0 0\n",
" minivan 102 311 0.143 0.209 0.0702 0.0516\n",
" mint candy 3 6 1 0 0 0\n",
" mirror 336 573 0.186 0.369 0.136 0.0899\n",
" mitten 12 33 0 0 0.0224 0.0146\n",
"mixer/mixer kitchen tool/stand mixer 16 20 0.0848 0.0748 0.0449 0.0293\n",
" money 11 79 1 0 0.00361 0.00361\n",
"monitor/monitor computer equipment 280 598 0.324 0.736 0.432 0.329\n",
" monkey 12 12 1 0 0.0103 0.00431\n",
" motor 75 149 0.164 0.0805 0.0671 0.0322\n",
" motor scooter/scooter 47 111 0.109 0.0721 0.0591 0.0374\n",
" motorcycle 354 1321 0.497 0.468 0.392 0.265\n",
"mound/mound baseball/pitcher's mound 47 48 0.247 0.854 0.598 0.53\n",
"mouse/mouse computer equipment/computer mouse 289 384 0.508 0.628 0.589 0.495\n",
" mousepad 55 66 0.249 0.643 0.394 0.326\n",
" muffin 15 154 0 0 0.0157 0.0129\n",
" mug 180 368 0.202 0.438 0.255 0.214\n",
" mushroom 85 1357 0.18 0.221 0.118 0.0702\n",
"musical instrument/instrument/instrument musical 1 3 1 0 0 0\n",
"napkin/table napkin/serviette 391 918 0.295 0.224 0.155 0.111\n",
" necklace 386 524 0.465 0.307 0.295 0.171\n",
"necktie/tie/tie necktie 361 815 0.454 0.38 0.32 0.222\n",
" needle 3 4 1 0 0 0\n",
" nest 2 3 1 0 0 0\n",
"newspaper/paper/paper newspaper 63 202 0.0499 0.0743 0.0162 0.0117\n",
" newsstand 3 6 1 0 0.00521 0.00521\n",
"nightshirt/nightwear/sleepwear/nightclothes 3 3 1 0 0.000598 0.000598\n",
"nosebag/nosebag for animals/feedbag 1 1 1 0 0 0\n",
"noseband/noseband for animals/nosepiece/nosepiece for animals 10 21 0 0 0.00439 0.00253\n",
" notebook 45 96 0.145 0.104 0.0312 0.0246\n",
" notepad 18 29 0.0289 0.069 0.0172 0.0154\n",
" nut 11 99 0 0 0.0127 0.0056\n",
" oar 19 51 0.127 0.118 0.0281 0.0125\n",
"oil lamp/kerosene lamp/kerosine lamp 1 1 0 0 0.00596 0.00533\n",
" olive oil 6 17 0 0 0.00117 0.00105\n",
" omelet/omelette 5 9 1 0 0.0166 0.015\n",
" onion 135 1767 0.208 0.105 0.0883 0.0566\n",
" orange/orange fruit 161 2364 0.405 0.57 0.381 0.293\n",
" orange juice 15 21 0.147 0.333 0.167 0.0978\n",
" ostrich 8 9 0.273 0.111 0.217 0.191\n",
"ottoman/pouf/pouffe/hassock 34 48 0.238 0.396 0.278 0.246\n",
" oven 96 111 0.175 0.495 0.184 0.139\n",
"overalls/overalls clothing 13 14 0 0 0.0124 0.00661\n",
" owl 11 14 1 0 0.0677 0.0583\n",
" packet 4 41 1 0 0 0\n",
" pad 13 52 0.232 0.0577 0.0509 0.0424\n",
" paddle/boat paddle 16 30 0.202 0.333 0.125 0.0667\n",
" padlock 18 27 1 0 0.0113 0.0086\n",
" paintbrush 7 15 1 0 0 0\n",
" painting 230 574 0.157 0.452 0.158 0.116\n",
" pajamas/pyjamas 27 54 0.0812 0.0741 0.0285 0.024\n",
" palette/pallet 6 42 1 0 0 0\n",
"pan/pan for cooking/cooking pan 61 242 0.218 0.0702 0.0854 0.0557\n",
"pan/pan metal container 1 1 0 0 0 0\n",
" pancake 13 45 0 0 0.0115 0.00791\n",
" pantyhose 3 3 1 0 0 0\n",
" papaya 7 96 0.0308 0.0104 0.00962 0.00789\n",
" paper plate 60 170 0.0895 0.288 0.0563 0.0418\n",
" paper towel 95 116 0.276 0.336 0.246 0.191\n",
"paperback book/paper-back book/softback book/soft-cover book 1 19 1 0 0 0\n",
" paperweight 1 1 1 0 0 0\n",
" parachute 5 16 0 0 0.00314 0.00306\n",
"parakeet/parrakeet/parroket/paraquet/paroquet/parroquet 5 21 0 0 0.0214 0.0143\n",
"parasail/parasail sports 15 50 0.199 0.36 0.158 0.135\n",
" parasol/sunshade 5 7 0.297 0.143 0.0932 0.0864\n",
" parchment 1 6 1 0 0 0\n",
" parka/anorak 4 29 1 0 0.00618 0.00592\n",
" parking meter 104 182 0.427 0.442 0.386 0.292\n",
" parrot 5 8 0.365 0.25 0.174 0.118\n",
"passenger car/passenger car part of a train/coach/coach part of a train 13 59 0 0 0.00941 0.00605\n",
" passport 4 6 1 0 0 0\n",
" pastry 56 1683 0.255 0.177 0.145 0.0997\n",
" pea/pea food 19 467 0.193 0.248 0.136 0.0982\n",
" peach 14 257 0 0 0.0102 0.00957\n",
" peanut butter 10 18 1 0 0.0738 0.0738\n",
" pear 28 268 0.194 0.0933 0.0739 0.0605\n",
"peeler/peeler tool for fruit and vegetables 2 2 0 0 0 0\n",
" pelican 9 24 0 0 0.0346 0.027\n",
" pen 63 237 0.11 0.0591 0.0437 0.0204\n",
" pencil 27 83 0.184 0.0964 0.0697 0.0353\n",
"pencil box/pencil case 1 1 1 0 0 0\n",
" pencil sharpener 3 3 1 0 0 0\n",
" pendulum 1 1 1 0 0 0\n",
" penguin 8 28 0 0 0.00422 0.00357\n",
" pennant 1 34 1 0 0 0\n",
" penny/penny coin 1 2 1 0 0 0\n",
" pepper/peppercorn 32 86 0 0 0.00595 0.00467\n",
"pepper mill/pepper grinder 16 19 0.101 0.158 0.0866 0.0834\n",
" perfume 5 16 1 0 0.00591 0.00343\n",
"person/baby/child/boy/girl/man/woman/human 390 2530 0.0353 0.0134 0.0211 0.0113\n",
" pet 17 27 0 0 0.0147 0.0134\n",
"pew/pew church bench/church bench 1 12 1 0 0 0\n",
"phonebook/telephone book/telephone directory 1 1 1 0 0 0\n",
"phonograph record/phonograph recording/record/record phonograph recording 6 26 1 0 0 0\n",
" piano 20 24 0.187 0.167 0.113 0.0889\n",
" pickle 45 162 0.172 0.117 0.0637 0.0506\n",
" pickup truck 85 171 0.159 0.257 0.107 0.0828\n",
" pie 9 22 1 0 0.0337 0.0319\n",
" pigeon 10 233 0.266 0.223 0.152 0.0896\n",
" piggy bank/penny bank 1 1 1 0 0 0\n",
" pillow 407 1290 0.349 0.54 0.329 0.254\n",
" pin/pin non jewelry 4 20 1 0 0 0\n",
" pineapple 36 215 0.149 0.0837 0.0581 0.0349\n",
" pinecone 6 12 0.477 0.0833 0.091 0.0898\n",
" tobacco pipe 1 1 1 0 0 0\n",
" pipe/piping 243 786 0.17 0.0445 0.0382 0.0185\n",
" pistol/handgun 1 1 1 0 0 0\n",
"pita/pita bread/pocket bread 2 4 1 0 0 0\n",
"pitcher/pitcher vessel for liquid/ewer 70 115 0.248 0.112 0.109 0.0904\n",
" pizza 391 782 0.345 0.664 0.481 0.412\n",
" place mat 125 330 0.185 0.158 0.101 0.0714\n",
" plate 365 1042 0.173 0.485 0.146 0.118\n",
" platter 7 23 1 0 0.00499 0.00338\n",
" playpen 1 1 1 0 0 0\n",
" pliers/plyers 6 24 1 0 0 0\n",
"plow/plow farm equipment/plough/plough farm equipment 3 3 1 0 0 0\n",
" pocketknife 1 1 1 0 0 0\n",
"poker/poker fire stirring tool/stove poker/fire hook 2 4 1 0 0 0\n",
" pole/post 346 2724 0.0752 0.0358 0.0215 0.0115\n",
"polo shirt/sport shirt 141 371 0.0493 0.124 0.0301 0.024\n",
" poncho 2 10 1 0 0 0\n",
" pony 12 24 1 0 0.0257 0.0236\n",
"pool table/billiard table/snooker table 1 1 1 0 0 0\n",
"pop/pop soda/soda/soda pop/tonic/soft drink 42 217 0.176 0.023 0.0212 0.0187\n",
"postbox/postbox public/mailbox/mailbox public 10 12 0 0 0.0136 0.00534\n",
" poster/placard 163 589 0.103 0.329 0.0901 0.0734\n",
" pot 96 282 0.233 0.411 0.21 0.123\n",
" flowerpot 264 850 0.283 0.366 0.26 0.187\n",
" potato 62 683 0.0827 0.19 0.0451 0.0346\n",
" potholder 7 12 0.142 0.0833 0.0281 0.0225\n",
" pottery/clayware 6 95 0 0 0.00596 0.00542\n",
" pouch 10 18 1 0 0 0\n",
"power shovel/excavator/digger 2 4 0 0 0 0\n",
" prawn/shrimp 13 111 0.156 0.00901 0.00934 0.00779\n",
" pretzel 2 13 1 0 0 0\n",
"printer/printing machine 55 59 0.191 0.254 0.189 0.141\n",
"projectile/projectile weapon/missile 7 15 1 0 0.00336 0.00264\n",
" projector 14 15 1 0 0.015 0.00992\n",
" propeller/propellor 120 212 0.47 0.243 0.252 0.132\n",
" puffin 1 3 1 0 0.0731 0.0709\n",
" pumpkin 13 422 0.387 0.045 0.074 0.0558\n",
" puppy 9 14 1 0 0.0113 0.00925\n",
" quiche 1 1 1 0 0 0\n",
" quilt/comforter 71 92 0.128 0.391 0.0934 0.0651\n",
" rabbit 9 14 1 0 0.0105 0.0103\n",
" racket/racquet 7 20 0 0 0.0131 0.0108\n",
" radiator 35 41 0.218 0.439 0.321 0.281\n",
"radio receiver/radio set/radio/tuner/tuner radio 21 23 0 0 0.00831 0.00566\n",
" radish/daikon 14 184 0.389 0.0109 0.0505 0.0289\n",
" raft 9 40 0 0 0.00831 0.00544\n",
"raincoat/waterproof jacket 9 25 0.113 0.04 0.0561 0.0462\n",
" ram/ram animal 12 49 0 0 0.0583 0.0476\n",
" raspberry 16 246 0.223 0.341 0.205 0.138\n",
" rat 2 2 1 0 0 0\n",
" razorblade 5 6 1 0 0 0\n",
"reamer/reamer juicer/juicer/juice reamer 5 5 0 0 0 0\n",
" rearview mirror 197 571 0.134 0.172 0.0487 0.0272\n",
" receipt 7 8 0.127 0.125 0.0359 0.0347\n",
"recliner/reclining chair/lounger/lounger chair 4 5 1 0 0.00748 0.00673\n",
"record player/phonograph/phonograph record player/turntable 4 4 1 0 0.224 0.169\n",
" reflector 121 639 0.151 0.0939 0.0523 0.0324\n",
" remote control 233 483 0.237 0.35 0.233 0.184\n",
" rhinoceros 5 7 1 0 0.00276 0.00196\n",
" ring 274 375 0.46 0.16 0.132 0.06\n",
" river boat 1 2 1 0 0.0135 0.0108\n",
" road map 1 1 1 0 0 0\n",
" robe 5 10 0 0 0.000806 0.000725\n",
" rocking chair 13 15 0.134 0.133 0.162 0.152\n",
" roller skate 1 1 1 0 0 0\n",
" Rollerblade 2 6 1 0 0.087 0.0688\n",
" rolling pin 11 13 0.232 0.0769 0.0824 0.0805\n",
"router/router computer equipment 6 10 1 0 0 0\n",
"rubber band/elastic band 59 94 0.133 0.0106 0.0115 0.0066\n",
" runner/runner carpet 3 4 1 0 0 0\n",
" plastic bag/paper bag 275 738 0.162 0.182 0.0757 0.0526\n",
"saddle/saddle on an animal 112 209 0.402 0.0574 0.154 0.0523\n",
"saddle blanket/saddlecloth/horse blanket 58 103 0.219 0.233 0.133 0.0633\n",
" saddlebag 6 12 0 0 0.0382 0.0265\n",
" sail 47 160 0.335 0.175 0.15 0.105\n",
" salad 27 53 0.2 0.189 0.126 0.105\n",
" salami 3 33 0 0 0.000778 0.000556\n",
" salmon/salmon fish 2 2 1 0 0 0\n",
" salmon/salmon food 2 6 1 0 0 0\n",
" salsa 2 3 1 0 0 0\n",
" saltshaker 77 121 0.206 0.306 0.17 0.133\n",
"sandal/sandal type of shoe 175 507 0.208 0.258 0.128 0.0786\n",
" sandwich 154 400 0.257 0.355 0.221 0.161\n",
" satchel 1 2 1 0 0 0\n",
" saucepan 2 12 1 0 0.0205 0.0144\n",
" saucer 48 126 0.176 0.278 0.165 0.142\n",
" sausage 52 546 0.134 0.293 0.0826 0.0592\n",
" sawhorse/sawbuck 1 2 1 0 0 0\n",
"scale/scale measuring instrument 37 46 0 0 0.00341 0.00315\n",
" scarecrow/strawman 1 1 1 0 0 0\n",
" scarf 164 259 0.149 0.0849 0.0549 0.0345\n",
" school bus 18 39 0 0 0.0465 0.0367\n",
" scissors 147 269 0.333 0.301 0.261 0.22\n",
" scoreboard 26 33 0.132 0.0303 0.0505 0.0271\n",
" screwdriver 13 64 1 0 0.00123 0.000983\n",
" scrubbing brush 25 28 0.125 0.0714 0.0404 0.0184\n",
" sculpture 14 30 0.159 0.0333 0.0168 0.00848\n",
" seabird/seafowl 3 4 0 0 0.0567 0.0561\n",
" seahorse 1 4 1 0 0 0\n",
" seashell 9 55 1 0 0.000412 0.000247\n",
" sewing machine 4 4 1 0 0.126 0.0126\n",
" shaker 5 8 1 0 0.00568 0.00511\n",
" shampoo 28 71 0.191 0.211 0.0962 0.0644\n",
" shark 5 9 1 0 0 0\n",
" sharpener 1 1 1 0 0 0\n",
" Sharpie 2 2 1 0 0 0\n",
"shaver/shaver electric/electric shaver/electric razor 2 3 0 0 0 0\n",
"shaving cream/shaving soap 5 5 1 0 0.00993 0.00794\n",
" shawl 1 1 1 0 0 0\n",
" shears 3 4 1 0 0 0\n",
" sheep 191 2599 0.462 0.443 0.392 0.26\n",
" shepherd dog/sheepdog 1 1 1 0 0 0\n",
" shield 6 26 1 0 0 0\n",
" shirt 341 1423 0.051 0.184 0.0349 0.026\n",
"shoe/sneaker/sneaker type of shoe/tennis shoe 381 1970 0.101 0.277 0.0642 0.0407\n",
" shopping bag 30 70 0.0237 0.0143 0.0291 0.0197\n",
" shopping cart 8 17 0.251 0.0588 0.0422 0.0309\n",
"short pants/shorts/shorts clothing/trunks/trunks clothing 379 1072 0.177 0.49 0.151 0.116\n",
" shot glass 4 36 1 0 0 0\n",
" shoulder bag 30 61 1 0 0.0323 0.0277\n",
" shovel 14 17 1 0 0 0\n",
" shower head 72 90 0.546 0.189 0.219 0.154\n",
" shower curtain 74 99 0.262 0.596 0.366 0.315\n",
" signboard 398 1799 0.147 0.297 0.103 0.0731\n",
" silo 8 12 0 0 0.051 0.0451\n",
" sink 334 439 0.413 0.642 0.493 0.398\n",
" skateboard 361 645 0.479 0.544 0.413 0.299\n",
" skewer 5 36 1 0 0 0\n",
" ski 377 1491 0.457 0.266 0.265 0.161\n",
" ski boot 311 1371 0.479 0.412 0.372 0.188\n",
" ski parka/ski jacket 75 320 0.152 0.519 0.141 0.1\n",
" ski pole 366 1507 0.624 0.366 0.387 0.204\n",
" skirt 218 366 0.204 0.495 0.257 0.198\n",
" sled/sledge/sleigh 6 7 1 0 0.00352 0.00282\n",
" sleeping bag 3 4 1 0 0 0\n",
"slipper/slipper footwear/carpet slipper/carpet slipper footwear 13 30 0 0 0.00586 0.00488\n",
" smoothie 2 3 1 0 0 0\n",
" snowboard 194 350 0.345 0.451 0.347 0.273\n",
" snowman 6 7 1 0 0 0\n",
" snowmobile 1 6 1 0 0.0222 0.0068\n",
" soap 130 263 0.274 0.179 0.144 0.104\n",
" soccer ball 75 105 0.297 0.733 0.625 0.565\n",
" sock 389 1408 0.3 0.413 0.213 0.137\n",
" sofa/couch/lounge 414 528 0.404 0.723 0.524 0.43\n",
" softball 1 1 1 0 0.00995 0.00995\n",
"solar array/solar battery/solar panel 6 8 1 0 0 0\n",
" sombrero 1 32 1 0 0 0\n",
" soup 45 55 0.174 0.491 0.19 0.161\n",
" soupspoon 7 12 1 0 0.00215 0.00172\n",
"sour cream/soured cream 3 3 1 0 0.0484 0.0445\n",
" space shuttle 2 2 1 0 0 0\n",
"sparkler/sparkler fireworks 1 3 1 0 0 0\n",
" spatula 65 116 0.109 0.147 0.0439 0.025\n",
" spear/lance 1 2 1 0 0 0\n",
"spectacles/specs/eyeglasses/glasses 334 518 0.196 0.425 0.131 0.073\n",
" spice rack 11 14 0.674 0.0714 0.121 0.106\n",
" spider 1 1 1 0 0 0\n",
" sponge 13 18 0.0641 0.0556 0.0427 0.0348\n",
" spoon 227 426 0.205 0.279 0.135 0.1\n",
"sportswear/athletic wear/activewear 1 2 1 0 0 0\n",
" spotlight 11 71 1 0 0.00789 0.00392\n",
" squirrel 2 2 1 0 0 0\n",
"stapler/stapler stapling machine 8 8 0 0 0.00739 0.00709\n",
" starfish/sea star 2 2 0 0 0.00292 0.00233\n",
"statue/statue sculpture 119 428 0.301 0.266 0.177 0.093\n",
" steak/steak food 14 20 0.162 0.4 0.189 0.12\n",
" steering wheel 125 155 0.293 0.0839 0.0831 0.0582\n",
" stepladder 5 5 1 0 0 0\n",
" step stool 5 6 1 0 0 0\n",
"stereo/stereo sound system 13 19 1 0 0.00231 0.00173\n",
" stirrer 4 5 1 0 0.0715 0.0478\n",
" stirrup 48 83 0.239 0.301 0.198 0.112\n",
" stool 63 128 0.239 0.367 0.261 0.222\n",
" stop sign 170 216 0.402 0.644 0.466 0.428\n",
" brake light 45 210 0.0613 0.0524 0.0192 0.0135\n",
"stove/kitchen stove/range/range kitchen appliance/kitchen range/cooking stove 209 230 0.359 0.461 0.294 0.228\n",
" strainer 13 20 0 0 0.00704 0.00369\n",
" strap 278 1026 0.065 0.00877 0.00923 0.00442\n",
"straw/straw for drinking/drinking straw 116 226 0.239 0.111 0.0868 0.0439\n",
" strawberry 72 864 0.224 0.25 0.143 0.0855\n",
" street sign 367 1628 0.198 0.365 0.162 0.126\n",
"streetlight/street lamp 369 1606 0.14 0.0523 0.0383 0.0212\n",
" string cheese 1 1 1 0 0 0\n",
" subwoofer 3 3 0 0 0.00319 0.00219\n",
" sugar bowl 4 4 1 0 0 0\n",
" suit/suit clothing 18 51 0.0363 0.353 0.0328 0.024\n",
" sunflower 17 86 0.0259 0.00543 0.0119 0.00772\n",
" sunglasses 384 1488 0.243 0.114 0.0658 0.0346\n",
" sunhat 14 48 0 0 0.0256 0.0171\n",
" surfboard 355 707 0.413 0.46 0.319 0.221\n",
" sushi 4 36 0 0 0.0182 0.0173\n",
" mop 8 11 1 0 0.0112 0.0111\n",
" sweat pants 5 7 1 0 0.0047 0.00433\n",
" sweatband 17 37 0.0575 0.216 0.032 0.0252\n",
" sweater 193 365 0.112 0.255 0.0662 0.0494\n",
" sweatshirt 115 258 0.0606 0.0814 0.0304 0.0239\n",
" sweet potato 5 23 1 0 0.00974 0.00892\n",
"swimsuit/swimwear/bathing suit/swimming costume/bathing costume/swimming trunks/bathing trunks 129 485 0.225 0.198 0.0985 0.0618\n",
" sword 11 14 1 0 0 0\n",
" syringe 1 1 1 0 0 0\n",
" Tabasco sauce 1 1 1 0 0 0\n",
"table-tennis table/ping-pong table 2 3 1 0 0 0\n",
" table 371 595 0.0883 0.323 0.0596 0.0439\n",
" table lamp 12 20 0.0191 0.05 0.0114 0.00954\n",
" tablecloth 311 501 0.199 0.47 0.237 0.171\n",
" tachometer 1 3 1 0 0 0\n",
" tag 263 1186 0.169 0.214 0.0958 0.0671\n",
" taillight/rear light 352 1637 0.279 0.196 0.117 0.067\n",
" tambourine 1 1 1 0 0 0\n",
"tank/tank storage vessel/storage tank 20 65 1 0 0.00808 0.00503\n",
"tank top/tank top clothing 209 337 0.187 0.472 0.205 0.155\n",
"tape/tape sticky cloth or paper 22 42 1 0 0.00103 0.00091\n",
"tape measure/measuring tape 7 7 1 0 0 0\n",
" tapestry 4 9 0 0 0.00861 0.00755\n",
" tarp 89 204 0.123 0.152 0.0513 0.0366\n",
" tartan/plaid 4 14 1 0 0 0\n",
" tassel 11 34 1 0 0.000697 0.000209\n",
" tea bag 2 4 1 0 0 0\n",
" teacup 9 35 1 0 0.00483 0.00459\n",
" teakettle 4 4 0.046 0.5 0.0443 0.0436\n",
" teapot 25 38 0.121 0.158 0.0551 0.0371\n",
" teddy bear 301 1029 0.603 0.423 0.428 0.307\n",
"telephone/phone/telephone set 176 203 0.216 0.158 0.104 0.0651\n",
"telephone booth/phone booth/call box/telephone box/telephone kiosk 8 10 1 0 0.0728 0.0662\n",
"telephone pole/telegraph pole/telegraph post 183 663 0.213 0.163 0.101 0.0622\n",
"television camera/tv camera 4 7 1 0 0 0\n",
"television set/tv/tv set 369 397 0.385 0.783 0.61 0.525\n",
" tennis ball 253 448 0.527 0.528 0.441 0.316\n",
" tennis racket 387 576 0.487 0.659 0.484 0.35\n",
" thermometer 5 5 1 0 0.00491 0.00491\n",
" thermos bottle 7 7 1 0 0.00321 0.00289\n",
" thermostat 25 25 0.128 0.12 0.0434 0.027\n",
" thread/yarn 13 62 1 0 0 0\n",
"thumbtack/drawing pin/pushpin 3 20 1 0 0 0\n",
" tiara 5 10 1 0 0.0194 0.0162\n",
" tiger 7 10 1 0 0 0\n",
"tights/tights clothing/leotards 10 13 1 0 0.00543 0.00314\n",
" timer/stopwatch 11 15 1 0 0.00231 0.00185\n",
" tinfoil 59 82 0.194 0.171 0.124 0.0911\n",
" tinsel 5 6 1 0 0.00521 0.00521\n",
" tissue paper 48 84 0.0582 0.0952 0.0264 0.0191\n",
" toast/toast food 13 36 1 0 0.0122 0.0107\n",
" toaster 54 69 0.198 0.275 0.18 0.132\n",
" toaster oven 13 13 0.101 0.385 0.108 0.0979\n",
" toilet 357 629 0.493 0.548 0.403 0.353\n",
"toilet tissue/toilet paper/bathroom tissue 212 349 0.382 0.438 0.37 0.263\n",
" tomato 248 2107 0.194 0.355 0.188 0.138\n",
" tongs 26 44 0.148 0.0682 0.0592 0.0202\n",
" toolbox 7 7 1 0 0 0\n",
" toothbrush 139 276 0.226 0.257 0.157 0.0978\n",
" toothpaste 35 50 0.0547 0.02 0.0253 0.017\n",
" toothpick 21 101 0.111 0.099 0.0362 0.0254\n",
" cover 25 49 0.0107 0.0408 0.00977 0.0081\n",
" tortilla 4 11 1 0 0.00138 0.00138\n",
" tow truck 4 4 0 0 0.00562 0.00523\n",
" towel 118 427 0.137 0.201 0.0655 0.0476\n",
"towel rack/towel rail/towel bar 112 191 0.289 0.277 0.183 0.115\n",
" toy 213 943 0.197 0.134 0.0973 0.0579\n",
"tractor/tractor farm equipment 11 15 0.193 0.133 0.11 0.0986\n",
" traffic light 397 1551 0.467 0.372 0.311 0.2\n",
" dirt bike 6 9 0 0 0.0999 0.0806\n",
"trailer truck/tractor trailer/trucking rig/articulated lorry/semi truck 27 72 0.0756 0.208 0.0582 0.0465\n",
"train/train railroad vehicle/railroad train 351 506 0.489 0.628 0.433 0.324\n",
" trampoline 3 4 1 0 0 0\n",
" tray 154 472 0.153 0.208 0.0959 0.0669\n",
" trench coat 1 1 1 0 0.0112 0.0101\n",
" tricycle 5 7 1 0 0.00376 0.00301\n",
" tripod 21 24 0.363 0.262 0.194 0.119\n",
"trousers/pants/pants clothing 390 1416 0.0752 0.309 0.0533 0.0373\n",
" truck 185 343 0.162 0.347 0.123 0.0885\n",
" trunk 10 141 0.324 0.0922 0.148 0.115\n",
" turban 5 35 1 0 0.00183 0.00132\n",
" turkey/turkey food 8 9 1 0 0 0\n",
" turnip 2 20 1 0 0 0\n",
" turtle 5 5 1 0 0 0\n",
"turtleneck/turtleneck clothing/polo-neck 1 1 1 0 0 0\n",
" typewriter 2 2 1 0 0.00906 0.00634\n",
" umbrella 397 1777 0.421 0.364 0.287 0.184\n",
"underwear/underclothes/underclothing/underpants 11 13 1 0 0.000696 0.000369\n",
" urinal 39 237 0.463 0.274 0.252 0.197\n",
" urn 2 5 1 0 0.0103 0.0103\n",
" vacuum cleaner 11 13 1 0 0.0915 0.0749\n",
" vase 388 1055 0.41 0.509 0.432 0.345\n",
" vending machine 12 23 0.0972 0.0435 0.0473 0.0471\n",
"vent/blowhole/air vent 272 583 0.164 0.247 0.113 0.0801\n",
" vest/waistcoat 94 160 0.167 0.184 0.0998 0.0642\n",
" videotape 2 38 1 0 0.0156 0.00613\n",
" vinegar 3 3 1 0 0.0269 0.0169\n",
" violin/fiddle 2 4 1 0 0 0\n",
" volleyball 3 9 0 0 0 0\n",
" vulture 1 5 1 0 0.069 0.0673\n",
" waffle 11 22 1 0 0.0542 0.0419\n",
" waffle iron 1 1 1 0 0 0\n",
" wagon 9 19 0 0 0.00347 0.00249\n",
" wagon wheel 9 54 0.0534 0.0185 0.0234 0.0172\n",
" walking stick 4 4 1 0 0 0\n",
" wall clock 16 19 0.0791 0.263 0.0481 0.0461\n",
"wall socket/wall plug/electric outlet/electrical outlet/outlet/electric receptacle 361 620 0.274 0.435 0.255 0.181\n",
" wallet/billfold 24 29 0.0745 0.103 0.047 0.0426\n",
"washbasin/basin/basin for washing/washbowl/washstand/handbasin 2 2 1 0 0.00453 0.00453\n",
"automatic washer/washing machine 10 10 0.248 0.1 0.129 0.121\n",
" watch/wristwatch 368 551 0.294 0.335 0.189 0.115\n",
" water bottle 141 281 0.144 0.249 0.123 0.0986\n",
" water cooler 9 12 1 0 0.0105 0.0078\n",
"water faucet/water tap/tap/tap water faucet 15 20 0 0 0.0205 0.0113\n",
"water heater/hot-water heater 2 2 1 0 0 0\n",
" water jug 2 4 1 0 0 0\n",
"water scooter/sea scooter/jet ski 3 7 1 0 0 0\n",
" water ski 5 7 0.263 0.429 0.348 0.228\n",
" water tower 10 13 1 0 0.007 0.0063\n",
" watering can 5 5 0 0 0 0\n",
" watermelon 18 99 0.0697 0.0707 0.0269 0.0231\n",
"weathervane/vane/vane weathervane/wind vane 39 50 0.27 0.54 0.268 0.14\n",
" webcam 11 13 1 0 0.0673 0.0482\n",
"wedding cake/bridecake 19 20 0.19 0.45 0.19 0.12\n",
"wedding ring/wedding band 6 8 1 0 0.00562 0.00199\n",
" wet suit 252 443 0.476 0.707 0.614 0.432\n",
" wheel 375 2265 0.115 0.313 0.0666 0.042\n",
" wheelchair 10 13 0.292 0.154 0.0888 0.0557\n",
" whipped cream 12 21 0 0 0.0214 0.0131\n",
" whistle 1 1 1 0 0 0\n",
" wig 8 11 1 0 0.0197 0.0165\n",
" wind chime 2 2 1 0 0 0\n",
" windmill 4 5 0 0 0.00256 0.00218\n",
"window box/window box for plants 14 25 0.226 0.04 0.0108 0.00751\n",
"windshield wiper/windscreen wiper/wiper/wiper for windshield or screen 297 791 0.316 0.287 0.182 0.101\n",
"windsock/air sock/air-sleeve/wind sleeve/wind cone 6 6 0 0 0.0187 0.0182\n",
" wine bottle 119 762 0.219 0.407 0.199 0.142\n",
"wine bucket/wine cooler 5 9 1 0 0.00508 0.00484\n",
" wineglass 197 911 0.414 0.436 0.333 0.244\n",
"blinder/blinder for horses 21 49 1 0 0.0438 0.0245\n",
" wok 5 8 1 0 0.0364 0.0206\n",
" wolf 2 5 1 0 0 0\n",
" wooden spoon 13 20 0.281 0.05 0.0316 0.018\n",
" wreath 14 21 0 0 0.0279 0.0203\n",
" wrench/spanner 14 80 1 0 0.00704 0.00513\n",
" wristband 25 42 0.0876 0.429 0.0711 0.0573\n",
" wristlet/wrist band 128 261 0.174 0.379 0.138 0.101\n",
"yogurt/yoghurt/yoghourt 7 9 0.0782 0.222 0.0362 0.0346\n",
"yoke/yoke animal equipment 3 4 1 0 0 0\n",
" zebra 325 1037 0.833 0.75 0.818 0.65\n",
" zucchini/courgette 17 178 0.0896 0.124 0.0417 0.0317\n",
"Speed: 0.1ms preprocess, 4.5ms inference, 0.0ms loss, 8.3ms postprocess per image\n",
"Saving runs\\detect\\train\\predictions.json...\n",
"\n",
"Evaluating lvis mAP using runs\\detect\\train\\predictions.json and C:\\Users\\User\\Downloads\\Fish Detection\\datasets\\lvis\\annotations\\lvis_v1_val.json...\n",
"\u001b[31m\u001b[1mrequirements:\u001b[0m Ultralytics requirement ['lvis>=0.5.3'] not found, attempting AutoUpdate...\n",
"Collecting lvis>=0.5.3\n",
" Downloading lvis-0.5.3-py3-none-any.whl.metadata (856 bytes)\n",
"Requirement already satisfied: cycler>=0.10.0 in c:\\users\\user\\appdata\\roaming\\python\\python39\\site-packages (from lvis>=0.5.3) (0.10.0)\n",
"Requirement already satisfied: Cython>=0.29.12 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.0.10)\n",
"Requirement already satisfied: kiwisolver>=1.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.4.5)\n",
"Requirement already satisfied: matplotlib>=3.1.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.9.0)\n",
"Requirement already satisfied: numpy>=1.18.2 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.26.4)\n",
"Requirement already satisfied: opencv-python>=4.1.0.25 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (4.9.0.80)\n",
"Requirement already satisfied: pyparsing>=2.4.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (3.1.2)\n",
"Requirement already satisfied: python-dateutil>=2.8.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (2.9.0)\n",
"Requirement already satisfied: six>=1.12.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from lvis>=0.5.3) (1.16.0)\n",
"Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (1.2.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (4.52.4)\n",
"Requirement already satisfied: packaging>=20.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (24.0)\n",
"Requirement already satisfied: pillow>=8 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (10.3.0)\n",
"Requirement already satisfied: importlib-resources>=3.2.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from matplotlib>=3.1.1->lvis>=0.5.3) (6.4.0)\n",
"Requirement already satisfied: zipp>=3.1.0 in c:\\users\\user\\anaconda3\\envs\\detr\\lib\\site-packages (from importlib-resources>=3.2.0->matplotlib>=3.1.1->lvis>=0.5.3) (3.17.0)\n",
"Downloading lvis-0.5.3-py3-none-any.whl (14 kB)\n",
"Installing collected packages: lvis\n",
"Successfully installed lvis-0.5.3\n",
"\n",
"\u001b[31m\u001b[1mrequirements:\u001b[0m AutoUpdate success 4.7s, installed 1 package: ['lvis>=0.5.3']\n",
"\u001b[31m\u001b[1mrequirements:\u001b[0m \u001b[1mRestart runtime or rerun command for updates to take effect\u001b[0m\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[07/15 08:29:29] lvis.results WARNING: Assuming user provided the results in correct format.\n"
]
}
],
"source": [
"# train the model on the lvis dataset\n",
"results = model.train(data='lvis.yaml', epochs=10, save=True, plots=True, device=0, val=True, imgsz=640)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "detr",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|