File size: 7,106 Bytes
dd0fa64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import nest_asyncio
nest_asyncio.apply()
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
import edge_tts
import librosa
import torch
from fairseq import checkpoint_utils
import uuid
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS
tts_voice_list = asyncio.run(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def get_unique_filename(extension):
return f"{uuid.uuid4()}.{extension}"
def model_data(model_name):
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def get_model_names():
model_root = "weights" # Assuming this is where your models are stored
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
async def tts(
model_name,
tts_text,
tts_voice,
index_rate,
use_uploaded_voice,
uploaded_voice,
):
speed = 0 # Default speech speed
f0_up_key = 0 # Default pitch adjustment
f0_method = "rmvpe" # Default pitch extraction method
protect = 0.33 # Default protect value
filter_radius = 3
resample_sr = 0
rms_mix_rate = 0.25
edge_time = 0 # Initialize edge_time
edge_output_filename = get_unique_filename("mp3")
try:
if use_uploaded_voice:
if uploaded_voice is None:
return "No voice file uploaded.", None, None
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(uploaded_voice)
uploaded_file_path = tmp_file.name
audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
else:
if limitation and len(tts_text) > 4000:
return (
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
None,
None,
)
t0 = time.time()
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
await edge_tts.Communicate(
tts_text, tts_voice, rate=speed_str
).save(edge_output_filename)
t1 = time.time()
edge_time = t1 - t0
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
duration = len(audio) / sr
print(f"Audio duration: {duration}s")
if limitation and duration >= 20:
return (
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
None,
None,
)
f0_up_key = int(f0_up_key)
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
if f0_method == "rmvpe":
vc.model_rmvpe = rmvpe_model
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
edge_output_filename if not use_uploaded_voice else uploaded_file_path,
times,
f0_up_key,
f0_method,
index_file,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
if tgt_sr != resample_sr and resample_sr >= 16000:
tgt_sr = resample_sr
info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
print(info)
return (
info,
edge_output_filename if not use_uploaded_voice else None,
(tgt_sr, audio_opt),
edge_output_filename
)
except EOFError:
info = (
"output not valid. This may occur when input text and speaker do not match."
)
print(info)
return info, None, None
except Exception as e:
traceback_info = traceback.format_exc()
print(traceback_info)
return str(e), None, None
voice_mapping = {
"Mongolian Male": "mn-MN-BataaNeural",
"Mongolian Female": "mn-MN-YesuiNeural"
}
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|