djinn-7b / README.md
mayacinka's picture
Update README.md
b83b8e4 verified
---
tags:
- merge
- mergekit
- lazymergekit
- paulml/DPOB-INMTOB-7B
- bardsai/jaskier-7b-dpo-v6.1
base_model:
- paulml/DPOB-INMTOB-7B
- bardsai/jaskier-7b-dpo-v6.1
---
# djinn-7b
djinn-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [paulml/DPOB-INMTOB-7B](https://huggingface.co/paulml/DPOB-INMTOB-7B)
* [bardsai/jaskier-7b-dpo-v6.1](https://huggingface.co/bardsai/jaskier-7b-dpo-v6.1)
# 🏆 Benchmarks
#### Open LLM Leaderboard
| Model | Average | ARC_easy | HellaSwag | MMLU | TruthfulQA_mc2 | Winogrande | GSM8K |
|------------------------|--------:|-----:|----------:|-----:|-----------:|-----------:|------:|
| mayacinka/djinn-7B | 78.40 | 86.7 | 87.37| 61.84 | 77.23 | 82.64 | 74.68|
#### MMLU (per category)
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|------|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6184|± |0.0039|
| - humanities |N/A |none |None |acc |0.5741|± |0.0067|
| - other |N/A |none |None |acc |0.6933|± |0.0079|
| - social_sciences|N/A |none |None |acc |0.7166|± |0.0080|
| - stem |N/A |none |None |acc |0.5147|± |0.0085|
### AutoEval
[Maxime Labonne's autoeval notebook](https://gist.github.com/majacinka/dfa0800c65f995c8f970c75f3e73d268)
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------|------:|------:|---------:|-------:|------:|
|[djinn-7b](https://huggingface.co/mayacinka/djinn-7b)| 44.9| 77.33| 77.18| 49.36| 62.19|
## 🧩 Configuration
```yaml
slices:
- sources:
- model: paulml/DPOB-INMTOB-7B
layer_range: [0, 32]
- model: bardsai/jaskier-7b-dpo-v6.1
layer_range: [0, 32]
merge_method: slerp
base_model: paulml/DPOB-INMTOB-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/djinn-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```