metadata
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model: CultriX/NeuralTrix-7B-dpo
model-index:
- name: NeuralZephyr-Beagle-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.6
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.67
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.46
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/NeuralZephyr-Beagle-7B
name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Code credit: this excellent medium blog
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using CultriX/NeuralTrix-7B-dpo as a base.
Models Merged
The following models were included in the merge:
- mlabonne/NeuralBeagle14-7B
- HuggingFaceH4/zephyr-7b-alpha
Benchmarks
Open LLM Leaderboard
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
mayacinka/NeuralZephyr-Beagle-7B | 71.57 | 68.6 | 86.38 | 64.67 | 65.17 | 81.14 | 63.46 |
Configuration
The following YAML configuration was used to produce this model:
models:
- model: CultriX/NeuralTrix-7B-dpo
- model: HuggingFaceH4/zephyr-7b-alpha
parameters:
density: 0.83
weight: 0.4
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.83
weight: 0.6
merge_method: dare_ties
base_model: CultriX/NeuralTrix-7B-dpo
parameters:
int8_mask: true
dtype: bfloat16
Inference
# pip install transformers
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/NeuralZephyr-Beagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.57 |
AI2 Reasoning Challenge (25-Shot) | 68.60 |
HellaSwag (10-Shot) | 86.38 |
MMLU (5-Shot) | 64.67 |
TruthfulQA (0-shot) | 65.17 |
Winogrande (5-shot) | 81.14 |
GSM8k (5-shot) | 63.46 |