File size: 5,438 Bytes
e0f212a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: apache-2.0
library_name: transformers
base_model:
- openchat/openchat-3.5-0106
datasets:
- Yukang/LongAlpaca-12k
model-index:
- name: OpenChat-3.5-0106_32K-PoSE
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.69
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 8.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.44
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.33
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 11.46
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
---
<p align="center">
<a href="https://ko-fi.com/pretergeek">Buy me a Ko-Fi</a> •
<a href="https://patreon.com/Pretergeek">Support my work using Patreon</a>
</p>
# OpenChat-3.5-0106_32K-PoSE
## Description
This model is [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) with the context length extended from 8192 tokens to 32768 tokens using [PoSE](https://huggingface.co/papers/2309.10400).
The model was fine-tuned using [Rank-Stabilized LoRA](https://huggingface.co/blog/damjan-k/rslora) and the [LongAlpaca-12K](Yukang/LongAlpaca-12k) dataset. I hope to continue extending the context in future versions and then apply the same methods to my [upscaled versions of OpenChat-3.5](https://huggingface.co/collections/Pretergeek/openchat-35-0106-with-additional-layers-66a8d3262c7c3ebdd7783a29) that were created using Block Expansion instead of Depth UP Scaling.
After fine-tuning, the model was tested using passkey retrieval and achieved a score of 100%. Below you can also find the results of the Open LLM Leaderboard evaluations and I am a bit disappointed with those. The model ended up with a significant reduction in performance compared to the original model in all but one test (MUSR). I expected it to do better than the original model on MUSR since that test benefits from long context understanding but I didn't expect such a negative impact on the other tasks. Anyway, I will be addressing this on a future version. I used the LongAlpaca-12K dataset because it is small and I have limited computational resources but I might have to try a larger dataset for the next attempt. If you would like to help me, there are links on the top of the model card for my Patreon and Ko-Fi.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Pretergeek__OpenChat-3.5-0106_32K-PoSE)
| Metric |Value|
|-------------------|----:|
|Avg. |12.70|
|IFEval (0-Shot) |39.69|
|BBH (3-Shot) | 8.83|
|MATH Lvl 5 (4-Shot)| 1.44|
|GPQA (0-shot) | 3.47|
|MuSR (0-shot) |11.33|
|MMLU-PRO (5-shot) |11.46|
# Citation
```
@misc{zhu2024poseefficientcontextwindow,
title={PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training},
author={Dawei Zhu and Nan Yang and Liang Wang and Yifan Song and Wenhao Wu and Furu Wei and Sujian Li},
year={2024},
eprint={2309.10400},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.10400},
}
``` |