mauro's picture
End of training
713b9a2 verified
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
model-index:
  - name: bert-base-multilingual-cased-finetuned-CAJ
    results: []

bert-base-multilingual-cased-finetuned-CAJ

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0475 1.0 4 0.9036
0.856 2.0 8 0.7524
0.8014 3.0 12 0.9149
0.7855 4.0 16 0.8052
0.6329 5.0 20 0.8866
0.7714 6.0 24 0.9880
0.6925 7.0 28 0.7490
0.6408 8.0 32 0.6889
0.6983 9.0 36 0.7648
0.6028 10.0 40 0.4431
0.5899 11.0 44 0.6020
0.6032 12.0 48 0.5415
0.5282 13.0 52 0.5124
0.5528 14.0 56 0.6242
0.5191 15.0 60 0.4651
0.5307 16.0 64 0.7029
0.5309 17.0 68 0.5505
0.4425 18.0 72 0.4792
0.4594 19.0 76 0.3245
0.4425 20.0 80 0.5562
0.4409 21.0 84 0.4026
0.442 22.0 88 0.4993
0.4535 23.0 92 0.5693
0.3707 24.0 96 0.4002
0.3914 25.0 100 0.5969
0.3493 26.0 104 0.3247
0.3595 27.0 108 0.3832
0.395 28.0 112 0.4497
0.4186 29.0 116 0.3194
0.4131 30.0 120 0.3699
0.357 31.0 124 0.4968
0.3369 32.0 128 0.4404
0.3734 33.0 132 0.4266
0.342 34.0 136 0.5202
0.3643 35.0 140 0.3872
0.3362 36.0 144 0.5037
0.3302 37.0 148 0.5572
0.3241 38.0 152 0.4138
0.299 39.0 156 0.2888
0.3383 40.0 160 0.5453
0.3786 41.0 164 0.3909
0.3121 42.0 168 0.4414
0.3357 43.0 172 0.3216
0.3601 44.0 176 0.3046
0.2662 45.0 180 0.4090
0.2979 46.0 184 0.4571
0.4222 47.0 188 0.4513
0.3006 48.0 192 0.3829
0.3385 49.0 196 0.3473
0.2711 50.0 200 0.3419

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2