File size: 3,906 Bytes
713b9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: bert-base-multilingual-cased-finetuned-CAJ
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-cased-finetuned-CAJ

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4226

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0475        | 1.0   | 4    | 0.9036          |
| 0.856         | 2.0   | 8    | 0.7524          |
| 0.8014        | 3.0   | 12   | 0.9149          |
| 0.7855        | 4.0   | 16   | 0.8052          |
| 0.6329        | 5.0   | 20   | 0.8866          |
| 0.7714        | 6.0   | 24   | 0.9880          |
| 0.6925        | 7.0   | 28   | 0.7490          |
| 0.6408        | 8.0   | 32   | 0.6889          |
| 0.6983        | 9.0   | 36   | 0.7648          |
| 0.6028        | 10.0  | 40   | 0.4431          |
| 0.5899        | 11.0  | 44   | 0.6020          |
| 0.6032        | 12.0  | 48   | 0.5415          |
| 0.5282        | 13.0  | 52   | 0.5124          |
| 0.5528        | 14.0  | 56   | 0.6242          |
| 0.5191        | 15.0  | 60   | 0.4651          |
| 0.5307        | 16.0  | 64   | 0.7029          |
| 0.5309        | 17.0  | 68   | 0.5505          |
| 0.4425        | 18.0  | 72   | 0.4792          |
| 0.4594        | 19.0  | 76   | 0.3245          |
| 0.4425        | 20.0  | 80   | 0.5562          |
| 0.4409        | 21.0  | 84   | 0.4026          |
| 0.442         | 22.0  | 88   | 0.4993          |
| 0.4535        | 23.0  | 92   | 0.5693          |
| 0.3707        | 24.0  | 96   | 0.4002          |
| 0.3914        | 25.0  | 100  | 0.5969          |
| 0.3493        | 26.0  | 104  | 0.3247          |
| 0.3595        | 27.0  | 108  | 0.3832          |
| 0.395         | 28.0  | 112  | 0.4497          |
| 0.4186        | 29.0  | 116  | 0.3194          |
| 0.4131        | 30.0  | 120  | 0.3699          |
| 0.357         | 31.0  | 124  | 0.4968          |
| 0.3369        | 32.0  | 128  | 0.4404          |
| 0.3734        | 33.0  | 132  | 0.4266          |
| 0.342         | 34.0  | 136  | 0.5202          |
| 0.3643        | 35.0  | 140  | 0.3872          |
| 0.3362        | 36.0  | 144  | 0.5037          |
| 0.3302        | 37.0  | 148  | 0.5572          |
| 0.3241        | 38.0  | 152  | 0.4138          |
| 0.299         | 39.0  | 156  | 0.2888          |
| 0.3383        | 40.0  | 160  | 0.5453          |
| 0.3786        | 41.0  | 164  | 0.3909          |
| 0.3121        | 42.0  | 168  | 0.4414          |
| 0.3357        | 43.0  | 172  | 0.3216          |
| 0.3601        | 44.0  | 176  | 0.3046          |
| 0.2662        | 45.0  | 180  | 0.4090          |
| 0.2979        | 46.0  | 184  | 0.4571          |
| 0.4222        | 47.0  | 188  | 0.4513          |
| 0.3006        | 48.0  | 192  | 0.3829          |
| 0.3385        | 49.0  | 196  | 0.3473          |
| 0.2711        | 50.0  | 200  | 0.3419          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2