File size: 1,553 Bytes
082db7d
4f523bd
082db7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: mit
tags:
- vision
- image-segmentation
widget:
- src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
  example_title: Person
- src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
  example_title: Person
datasets:
- mattmdjaga/human_parsing_dataset
---
# Segformer B0 fine-tuned for clothes segmentation

SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation.
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".

```python
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn

extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")

url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"

image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")

outputs = model(**inputs)
logits = outputs.logits.cpu()

upsampled_logits = nn.functional.interpolate(
    logits,
    size=image.size[::-1],
    mode="bilinear",
    align_corners=False,
)

pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
```