metadata
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window8-256
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: swinv2-small-patch4-window8-256-finetuned-galaxy10-decals
results: []
swinv2-small-patch4-window8-256-finetuned-galaxy10-decals
This model is a fine-tuned version of microsoft/swinv2-small-patch4-window8-256 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:
- Loss: 0.4138
- Accuracy: 0.8647
- Precision: 0.8650
- Recall: 0.8647
- F1: 0.8612
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.6991 | 0.99 | 62 | 1.4106 | 0.5011 | 0.4620 | 0.5011 | 0.4641 |
0.9843 | 2.0 | 125 | 0.8254 | 0.7148 | 0.7390 | 0.7148 | 0.7097 |
0.8115 | 2.99 | 187 | 0.6271 | 0.7773 | 0.7700 | 0.7773 | 0.7671 |
0.6956 | 4.0 | 250 | 0.5679 | 0.8061 | 0.8029 | 0.8061 | 0.7967 |
0.6167 | 4.99 | 312 | 0.5484 | 0.8281 | 0.8271 | 0.8281 | 0.8247 |
0.6291 | 6.0 | 375 | 0.5184 | 0.8191 | 0.8241 | 0.8191 | 0.8123 |
0.6113 | 6.99 | 437 | 0.5175 | 0.8134 | 0.8149 | 0.8134 | 0.8097 |
0.5468 | 8.0 | 500 | 0.4897 | 0.8309 | 0.8363 | 0.8309 | 0.8283 |
0.567 | 8.99 | 562 | 0.4459 | 0.8568 | 0.8594 | 0.8568 | 0.8529 |
0.5449 | 10.0 | 625 | 0.4544 | 0.8393 | 0.8390 | 0.8393 | 0.8353 |
0.5437 | 10.99 | 687 | 0.4528 | 0.8388 | 0.8410 | 0.8388 | 0.8375 |
0.4754 | 12.0 | 750 | 0.4524 | 0.8422 | 0.8421 | 0.8422 | 0.8396 |
0.5121 | 12.99 | 812 | 0.4840 | 0.8382 | 0.8415 | 0.8382 | 0.8349 |
0.5074 | 14.0 | 875 | 0.4138 | 0.8647 | 0.8650 | 0.8647 | 0.8612 |
0.4567 | 14.99 | 937 | 0.4339 | 0.8484 | 0.8479 | 0.8484 | 0.8473 |
0.4686 | 16.0 | 1000 | 0.4391 | 0.8540 | 0.8521 | 0.8540 | 0.8504 |
0.414 | 16.99 | 1062 | 0.4626 | 0.8422 | 0.8443 | 0.8422 | 0.8388 |
0.4382 | 18.0 | 1125 | 0.4116 | 0.8568 | 0.8558 | 0.8568 | 0.8541 |
0.4322 | 18.99 | 1187 | 0.4506 | 0.8512 | 0.8529 | 0.8512 | 0.8496 |
0.4424 | 20.0 | 1250 | 0.4300 | 0.8568 | 0.8542 | 0.8568 | 0.8538 |
0.4062 | 20.99 | 1312 | 0.4609 | 0.8608 | 0.8597 | 0.8608 | 0.8578 |
0.4459 | 22.0 | 1375 | 0.4517 | 0.8568 | 0.8580 | 0.8568 | 0.8551 |
0.4109 | 22.99 | 1437 | 0.4490 | 0.8534 | 0.8534 | 0.8534 | 0.8513 |
0.3984 | 24.0 | 1500 | 0.4434 | 0.8619 | 0.8606 | 0.8619 | 0.8601 |
0.4034 | 24.99 | 1562 | 0.4613 | 0.8596 | 0.8577 | 0.8596 | 0.8571 |
0.3682 | 26.0 | 1625 | 0.4493 | 0.8596 | 0.8591 | 0.8596 | 0.8573 |
0.3779 | 26.99 | 1687 | 0.4366 | 0.8591 | 0.8581 | 0.8591 | 0.8575 |
0.3965 | 28.0 | 1750 | 0.4370 | 0.8636 | 0.8616 | 0.8636 | 0.8609 |
0.3712 | 28.99 | 1812 | 0.4380 | 0.8591 | 0.8576 | 0.8591 | 0.8568 |
0.3776 | 29.76 | 1860 | 0.4389 | 0.8630 | 0.8624 | 0.8630 | 0.8612 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1