matthieulel's picture
End of training
27a6074 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window8-256
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swinv2-small-patch4-window8-256-finetuned-galaxy10-decals
    results: []

swinv2-small-patch4-window8-256-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/swinv2-small-patch4-window8-256 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4138
  • Accuracy: 0.8647
  • Precision: 0.8650
  • Recall: 0.8647
  • F1: 0.8612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6991 0.99 62 1.4106 0.5011 0.4620 0.5011 0.4641
0.9843 2.0 125 0.8254 0.7148 0.7390 0.7148 0.7097
0.8115 2.99 187 0.6271 0.7773 0.7700 0.7773 0.7671
0.6956 4.0 250 0.5679 0.8061 0.8029 0.8061 0.7967
0.6167 4.99 312 0.5484 0.8281 0.8271 0.8281 0.8247
0.6291 6.0 375 0.5184 0.8191 0.8241 0.8191 0.8123
0.6113 6.99 437 0.5175 0.8134 0.8149 0.8134 0.8097
0.5468 8.0 500 0.4897 0.8309 0.8363 0.8309 0.8283
0.567 8.99 562 0.4459 0.8568 0.8594 0.8568 0.8529
0.5449 10.0 625 0.4544 0.8393 0.8390 0.8393 0.8353
0.5437 10.99 687 0.4528 0.8388 0.8410 0.8388 0.8375
0.4754 12.0 750 0.4524 0.8422 0.8421 0.8422 0.8396
0.5121 12.99 812 0.4840 0.8382 0.8415 0.8382 0.8349
0.5074 14.0 875 0.4138 0.8647 0.8650 0.8647 0.8612
0.4567 14.99 937 0.4339 0.8484 0.8479 0.8484 0.8473
0.4686 16.0 1000 0.4391 0.8540 0.8521 0.8540 0.8504
0.414 16.99 1062 0.4626 0.8422 0.8443 0.8422 0.8388
0.4382 18.0 1125 0.4116 0.8568 0.8558 0.8568 0.8541
0.4322 18.99 1187 0.4506 0.8512 0.8529 0.8512 0.8496
0.4424 20.0 1250 0.4300 0.8568 0.8542 0.8568 0.8538
0.4062 20.99 1312 0.4609 0.8608 0.8597 0.8608 0.8578
0.4459 22.0 1375 0.4517 0.8568 0.8580 0.8568 0.8551
0.4109 22.99 1437 0.4490 0.8534 0.8534 0.8534 0.8513
0.3984 24.0 1500 0.4434 0.8619 0.8606 0.8619 0.8601
0.4034 24.99 1562 0.4613 0.8596 0.8577 0.8596 0.8571
0.3682 26.0 1625 0.4493 0.8596 0.8591 0.8596 0.8573
0.3779 26.99 1687 0.4366 0.8591 0.8581 0.8591 0.8575
0.3965 28.0 1750 0.4370 0.8636 0.8616 0.8636 0.8609
0.3712 28.99 1812 0.4380 0.8591 0.8576 0.8591 0.8568
0.3776 29.76 1860 0.4389 0.8630 0.8624 0.8630 0.8612

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1