matthieulel's picture
Model save
7721ab8 verified
|
raw
history blame
4.44 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window16-256
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swinv2-base-patch4-window16-256-finetuned-galaxy10-decals
    results: []

swinv2-base-patch4-window16-256-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window16-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4826
  • Accuracy: 0.8557
  • Precision: 0.8544
  • Recall: 0.8557
  • F1: 0.8543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5098 0.99 62 1.2358 0.5569 0.5493 0.5569 0.5321
0.8845 2.0 125 0.7391 0.7599 0.7800 0.7599 0.7497
0.753 2.99 187 0.5997 0.7971 0.8062 0.7971 0.7903
0.6149 4.0 250 0.4920 0.8331 0.8285 0.8331 0.8276
0.5807 4.99 312 0.4623 0.8326 0.8323 0.8326 0.8315
0.5938 6.0 375 0.4857 0.8365 0.8403 0.8365 0.8294
0.5583 6.99 437 0.4680 0.8264 0.8314 0.8264 0.8243
0.5103 8.0 500 0.4882 0.8191 0.8312 0.8191 0.8180
0.5186 8.99 562 0.4341 0.8574 0.8589 0.8574 0.8546
0.4696 10.0 625 0.4293 0.8495 0.8484 0.8495 0.8481
0.4711 10.99 687 0.4396 0.8422 0.8431 0.8422 0.8414
0.4271 12.0 750 0.4547 0.8489 0.8500 0.8489 0.8480
0.4576 12.99 812 0.4424 0.8489 0.8522 0.8489 0.8473
0.4483 14.0 875 0.4355 0.8495 0.8531 0.8495 0.8492
0.3914 14.99 937 0.4360 0.8540 0.8533 0.8540 0.8532
0.3883 16.0 1000 0.4464 0.8546 0.8550 0.8546 0.8526
0.3421 16.99 1062 0.4473 0.8489 0.8486 0.8489 0.8479
0.3666 18.0 1125 0.4455 0.8540 0.8541 0.8540 0.8528
0.3737 18.99 1187 0.4587 0.8574 0.8560 0.8574 0.8561
0.3694 20.0 1250 0.4583 0.8551 0.8528 0.8551 0.8523
0.3269 20.99 1312 0.4883 0.8506 0.8494 0.8506 0.8487
0.3699 22.0 1375 0.4808 0.8501 0.8514 0.8501 0.8486
0.3395 22.99 1437 0.4706 0.8484 0.8493 0.8484 0.8477
0.3147 24.0 1500 0.4676 0.8568 0.8556 0.8568 0.8557
0.3352 24.99 1562 0.4868 0.8557 0.8543 0.8557 0.8538
0.3007 26.0 1625 0.4887 0.8489 0.8492 0.8489 0.8475
0.3049 26.99 1687 0.4838 0.8534 0.8532 0.8534 0.8526
0.3228 28.0 1750 0.4910 0.8551 0.8539 0.8551 0.8536
0.3005 28.99 1812 0.4846 0.8534 0.8517 0.8534 0.8518
0.2972 29.76 1860 0.4826 0.8557 0.8544 0.8557 0.8543

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1