matthieulel's picture
End of training
1ec70f9 verified
metadata
license: apache-2.0
base_model: facebook/dinov2-small
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: dinov2-small-finetuned-galaxy10-decals
    results: []

dinov2-small-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/dinov2-small on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4852
  • Accuracy: 0.8613
  • Precision: 0.8626
  • Recall: 0.8613
  • F1: 0.8615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.279 0.99 31 0.9926 0.6454 0.6589 0.6454 0.6242
0.8187 1.98 62 0.6014 0.7948 0.8151 0.7948 0.7948
0.77 2.98 93 0.6323 0.7818 0.7928 0.7818 0.7777
0.6743 4.0 125 0.5555 0.8140 0.8149 0.8140 0.8083
0.6407 4.99 156 0.5732 0.8078 0.8174 0.8078 0.8096
0.64 5.98 187 0.4912 0.8360 0.8344 0.8360 0.8321
0.5685 6.98 218 0.5089 0.8185 0.8195 0.8185 0.8163
0.5438 8.0 250 0.4806 0.8320 0.8325 0.8320 0.8293
0.5455 8.99 281 0.4781 0.8410 0.8442 0.8410 0.8406
0.5002 9.98 312 0.4403 0.8478 0.8457 0.8478 0.8452
0.5003 10.98 343 0.5079 0.8151 0.8355 0.8151 0.8156
0.4828 12.0 375 0.5307 0.8191 0.8197 0.8191 0.8147
0.4674 12.99 406 0.4732 0.8444 0.8450 0.8444 0.8431
0.4646 13.98 437 0.4952 0.8281 0.8342 0.8281 0.8251
0.4477 14.98 468 0.4607 0.8523 0.8516 0.8523 0.8514
0.4224 16.0 500 0.4514 0.8506 0.8516 0.8506 0.8495
0.3751 16.99 531 0.4665 0.8484 0.8480 0.8484 0.8472
0.3874 17.98 562 0.4462 0.8489 0.8489 0.8489 0.8477
0.3675 18.98 593 0.4674 0.8484 0.8508 0.8484 0.8471
0.3434 20.0 625 0.4644 0.8512 0.8486 0.8512 0.8462
0.3332 20.99 656 0.4711 0.8557 0.8548 0.8557 0.8525
0.3187 21.98 687 0.4665 0.8534 0.8539 0.8534 0.8524
0.3039 22.98 718 0.5015 0.8439 0.8427 0.8439 0.8423
0.282 24.0 750 0.4783 0.8563 0.8563 0.8563 0.8559
0.2843 24.99 781 0.5064 0.8534 0.8519 0.8534 0.8514
0.2661 25.98 812 0.5021 0.8484 0.8476 0.8484 0.8460
0.2595 26.98 843 0.4852 0.8613 0.8626 0.8613 0.8615
0.2442 28.0 875 0.4903 0.8568 0.8546 0.8568 0.8543
0.2477 28.99 906 0.4781 0.8585 0.8569 0.8585 0.8570
0.2437 29.76 930 0.4772 0.8585 0.8580 0.8585 0.8577

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1