metadata
license: apache-2.0
base_model: facebook/dinov2-small
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: dinov2-small-finetuned-galaxy10-decals
results: []
dinov2-small-finetuned-galaxy10-decals
This model is a fine-tuned version of facebook/dinov2-small on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:
- Loss: 0.4852
- Accuracy: 0.8613
- Precision: 0.8626
- Recall: 0.8613
- F1: 0.8615
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.279 | 0.99 | 31 | 0.9926 | 0.6454 | 0.6589 | 0.6454 | 0.6242 |
0.8187 | 1.98 | 62 | 0.6014 | 0.7948 | 0.8151 | 0.7948 | 0.7948 |
0.77 | 2.98 | 93 | 0.6323 | 0.7818 | 0.7928 | 0.7818 | 0.7777 |
0.6743 | 4.0 | 125 | 0.5555 | 0.8140 | 0.8149 | 0.8140 | 0.8083 |
0.6407 | 4.99 | 156 | 0.5732 | 0.8078 | 0.8174 | 0.8078 | 0.8096 |
0.64 | 5.98 | 187 | 0.4912 | 0.8360 | 0.8344 | 0.8360 | 0.8321 |
0.5685 | 6.98 | 218 | 0.5089 | 0.8185 | 0.8195 | 0.8185 | 0.8163 |
0.5438 | 8.0 | 250 | 0.4806 | 0.8320 | 0.8325 | 0.8320 | 0.8293 |
0.5455 | 8.99 | 281 | 0.4781 | 0.8410 | 0.8442 | 0.8410 | 0.8406 |
0.5002 | 9.98 | 312 | 0.4403 | 0.8478 | 0.8457 | 0.8478 | 0.8452 |
0.5003 | 10.98 | 343 | 0.5079 | 0.8151 | 0.8355 | 0.8151 | 0.8156 |
0.4828 | 12.0 | 375 | 0.5307 | 0.8191 | 0.8197 | 0.8191 | 0.8147 |
0.4674 | 12.99 | 406 | 0.4732 | 0.8444 | 0.8450 | 0.8444 | 0.8431 |
0.4646 | 13.98 | 437 | 0.4952 | 0.8281 | 0.8342 | 0.8281 | 0.8251 |
0.4477 | 14.98 | 468 | 0.4607 | 0.8523 | 0.8516 | 0.8523 | 0.8514 |
0.4224 | 16.0 | 500 | 0.4514 | 0.8506 | 0.8516 | 0.8506 | 0.8495 |
0.3751 | 16.99 | 531 | 0.4665 | 0.8484 | 0.8480 | 0.8484 | 0.8472 |
0.3874 | 17.98 | 562 | 0.4462 | 0.8489 | 0.8489 | 0.8489 | 0.8477 |
0.3675 | 18.98 | 593 | 0.4674 | 0.8484 | 0.8508 | 0.8484 | 0.8471 |
0.3434 | 20.0 | 625 | 0.4644 | 0.8512 | 0.8486 | 0.8512 | 0.8462 |
0.3332 | 20.99 | 656 | 0.4711 | 0.8557 | 0.8548 | 0.8557 | 0.8525 |
0.3187 | 21.98 | 687 | 0.4665 | 0.8534 | 0.8539 | 0.8534 | 0.8524 |
0.3039 | 22.98 | 718 | 0.5015 | 0.8439 | 0.8427 | 0.8439 | 0.8423 |
0.282 | 24.0 | 750 | 0.4783 | 0.8563 | 0.8563 | 0.8563 | 0.8559 |
0.2843 | 24.99 | 781 | 0.5064 | 0.8534 | 0.8519 | 0.8534 | 0.8514 |
0.2661 | 25.98 | 812 | 0.5021 | 0.8484 | 0.8476 | 0.8484 | 0.8460 |
0.2595 | 26.98 | 843 | 0.4852 | 0.8613 | 0.8626 | 0.8613 | 0.8615 |
0.2442 | 28.0 | 875 | 0.4903 | 0.8568 | 0.8546 | 0.8568 | 0.8543 |
0.2477 | 28.99 | 906 | 0.4781 | 0.8585 | 0.8569 | 0.8585 | 0.8570 |
0.2437 | 29.76 | 930 | 0.4772 | 0.8585 | 0.8580 | 0.8585 | 0.8577 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1