matthieulel's picture
End of training
8d7d137 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-nano-22k-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-nano-22k-224-finetuned-galaxy10-decals
    results: []

convnextv2-nano-22k-224-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-nano-22k-224 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4386
  • Accuracy: 0.8687
  • Precision: 0.8680
  • Recall: 0.8687
  • F1: 0.8662

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7173 0.99 62 1.5497 0.4617 0.4305 0.4617 0.4119
0.9692 2.0 125 0.8180 0.7306 0.7295 0.7306 0.7246
0.7643 2.99 187 0.6075 0.7931 0.7921 0.7931 0.7880
0.6282 4.0 250 0.5506 0.8151 0.8112 0.8151 0.8068
0.5712 4.99 312 0.5769 0.7982 0.8129 0.7982 0.8002
0.5702 6.0 375 0.5195 0.8315 0.8351 0.8315 0.8225
0.5423 6.99 437 0.4890 0.8331 0.8296 0.8331 0.8303
0.4989 8.0 500 0.4764 0.8371 0.8361 0.8371 0.8342
0.4997 8.99 562 0.4725 0.8405 0.8393 0.8405 0.8365
0.476 10.0 625 0.4582 0.8467 0.8465 0.8467 0.8435
0.4603 10.99 687 0.4460 0.8489 0.8464 0.8489 0.8472
0.4318 12.0 750 0.4398 0.8534 0.8519 0.8534 0.8515
0.4387 12.99 812 0.4575 0.8613 0.8598 0.8613 0.8577
0.4357 14.0 875 0.4398 0.8568 0.8541 0.8568 0.8532
0.3944 14.99 937 0.4425 0.8540 0.8533 0.8540 0.8524
0.3961 16.0 1000 0.4394 0.8574 0.8555 0.8574 0.8542
0.3557 16.99 1062 0.4510 0.8523 0.8497 0.8523 0.8481
0.3881 18.0 1125 0.4399 0.8591 0.8590 0.8591 0.8577
0.3663 18.99 1187 0.4631 0.8546 0.8545 0.8546 0.8524
0.3691 20.0 1250 0.4439 0.8608 0.8585 0.8608 0.8577
0.3443 20.99 1312 0.4524 0.8568 0.8555 0.8568 0.8545
0.3728 22.0 1375 0.4386 0.8687 0.8680 0.8687 0.8662
0.3309 22.99 1437 0.4506 0.8585 0.8578 0.8585 0.8573
0.33 24.0 1500 0.4426 0.8630 0.8613 0.8630 0.8618
0.3541 24.99 1562 0.4625 0.8585 0.8561 0.8585 0.8560
0.2968 26.0 1625 0.4460 0.8613 0.8593 0.8613 0.8590
0.3031 26.99 1687 0.4492 0.8641 0.8630 0.8641 0.8628
0.3207 28.0 1750 0.4480 0.8664 0.8640 0.8664 0.8637
0.2949 28.99 1812 0.4478 0.8636 0.8614 0.8636 0.8615
0.2985 29.76 1860 0.4477 0.8636 0.8612 0.8636 0.8614

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1