mateiaassAI's picture
End of training
54d3d6a verified
---
library_name: transformers
license: mit
base_model: mateiaassAI/teacher_ag-news
tags:
- generated_from_trainer
datasets:
- moroco
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: teacher_agnews_moroco-demo
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: moroco
type: moroco
config: moroco
split: validation
args: moroco
metrics:
- name: F1
type: f1
value: 0.8679107737455669
- name: Accuracy
type: accuracy
value: 0.8549231548724877
- name: Precision
type: precision
value: 0.8702091440403067
- name: Recall
type: recall
value: 0.8671379372847562
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# teacher_agnews_moroco-demo
This model is a fine-tuned version of [mateiaassAI/teacher_ag-news](https://huggingface.co/mateiaassAI/teacher_ag-news) on the moroco dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0995
- F1: 0.8679
- Roc Auc: None
- Accuracy: 0.8549
- Precision: 0.8702
- Recall: 0.8671
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:|
| 0.1183 | 1.0 | 1358 | 0.1007 | 0.8613 | None | 0.8500 | 0.8751 | 0.8528 |
| 0.0811 | 2.0 | 2716 | 0.0991 | 0.8688 | None | 0.8546 | 0.8791 | 0.8590 |
| 0.0567 | 3.0 | 4074 | 0.0995 | 0.8679 | None | 0.8549 | 0.8702 | 0.8671 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0