mateiaassAI's picture
End of training
54d3d6a verified
metadata
library_name: transformers
license: mit
base_model: mateiaassAI/teacher_ag-news
tags:
  - generated_from_trainer
datasets:
  - moroco
metrics:
  - f1
  - accuracy
  - precision
  - recall
model-index:
  - name: teacher_agnews_moroco-demo
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: moroco
          type: moroco
          config: moroco
          split: validation
          args: moroco
        metrics:
          - name: F1
            type: f1
            value: 0.8679107737455669
          - name: Accuracy
            type: accuracy
            value: 0.8549231548724877
          - name: Precision
            type: precision
            value: 0.8702091440403067
          - name: Recall
            type: recall
            value: 0.8671379372847562

teacher_agnews_moroco-demo

This model is a fine-tuned version of mateiaassAI/teacher_ag-news on the moroco dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0995
  • F1: 0.8679
  • Roc Auc: None
  • Accuracy: 0.8549
  • Precision: 0.8702
  • Recall: 0.8671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy Precision Recall
0.1183 1.0 1358 0.1007 0.8613 None 0.8500 0.8751 0.8528
0.0811 2.0 2716 0.0991 0.8688 None 0.8546 0.8791 0.8590
0.0567 3.0 4074 0.0995 0.8679 None 0.8549 0.8702 0.8671

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0