File size: 2,112 Bytes
ddac493 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: google/bert_uncased_L-2_H-128_A-2
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_distillation_tiny
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8256880733944955
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_distillation_tiny
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4274
- Accuracy: 0.8257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 2023
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4139 | 1.0 | 527 | 0.4204 | 0.8096 |
| 0.27 | 2.0 | 1054 | 0.4274 | 0.8257 |
| 0.2226 | 3.0 | 1581 | 0.4899 | 0.8245 |
| 0.1931 | 4.0 | 2108 | 0.4961 | 0.8222 |
| 0.1732 | 5.0 | 2635 | 0.5302 | 0.8222 |
| 0.1608 | 6.0 | 3162 | 0.5393 | 0.8234 |
| 0.152 | 7.0 | 3689 | 0.5562 | 0.8177 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|