File size: 13,761 Bytes
54d74b3 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8c3952680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8c3952710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8c39527a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8c3952830>", "_build": "<function ActorCriticPolicy._build at 0x7fb8c39528c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8c3952950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb8c39529e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8c3952a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8c3952b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8c3952b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8c3952c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8c3952cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb8c38ea080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723827474136784384, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPD9LpIh5m6VWluuU9Fwrjp4Ne60JGeOAAAgD8AAIA/gKjBPQBToD8YbXI+9HIFv9/5zj3q1e08AAAAAAAAAAAzGI+9ZLy/Pr8OMLnN1K++o+ItvVAWvT0AAAAAAAAAAACO57zD6VG6Roz9NoMYgDJgeTk7eyoTtgAAgD8AAIA/Wgv5vW8JZz+yBQu9VgXsvn4V9r3AjM09AAAAAAAAAABNqy89FKaFuuCHF7nTcQW0Oefput63MDgAAIA/AACAP81MQDtc1LM/wimYPvWTiL6xYV67Z96JvQAAAAAAAAAA2s+JPV95wD6t2J49Isi2vvwzpz3kSaG9AAAAAAAAAACNy5O9bjY/P8FdCD6kWsW+n88tvMPFIz0AAAAAAAAAADNQvzwFoLM/JlSWPjdcCr5CGq67AfCMvAAAAAAAAAAARv0Qvo1E6j68CBs+B2WUviypdz1Nj+c9AAAAAAAAAAANqge+SPWQPp2WfT6XBWi+Mi7hOiJcPb0AAAAAAAAAAGaGKz08q48+CT8fvr6yir7fjbG8hbC1vQAAAAAAAAAAc2xMPlyHiD+9wAQ/TVAIv4SDiz612kA+AAAAAAAAAACGHAi+eSnIPu1pnj0jEaC+X4lXPHMytDwAAAAAAAAAAGJHgb5UNIc/tlapvTFA+b5K7Vm+SUW2PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBxQmReTmqMAWyUS+yMAXSUR0CRpV3Hq/ucdX2UKGgGR0BwJKUjcEeRaAdNQQFoCEdAkaXUqhDgInV9lChoBkdAcHOvgWJrL2gHTR0BaAhHQJGmuwmmce91fZQoaAZHQHEiLEYO2ApoB00FAWgIR0CRqAI5o4+9dX2UKGgGR0BsYjmW+oLoaAdNNAFoCEdAkaiGA9V3lnV9lChoBkdAZJRngYP5HmgHTegDaAhHQJGoxkrf+CN1fZQoaAZHQHJ4CHARChNoB00KAmgIR0CRql7WNFSbdX2UKGgGR0ByuJG5MDfWaAdNFAFoCEdAkarRf8dgfHV9lChoBkdAchqhsqJ/G2gHS/FoCEdAkasaUqx1PnV9lChoBkdAcMcBMSK3u2gHTQkBaAhHQJGrPO5avA51fZQoaAZHQHDxE7nxJ/ZoB00GAWgIR0CRq2e9i+cpdX2UKGgGR0BwjXIfbKzSaAdNBQFoCEdAkatmucMEzXV9lChoBkdAcPK+2VmjCmgHTREBaAhHQJGr8DzRQad1fZQoaAZHQHBO3Gff4ypoB00HAWgIR0CRrFd+XqqwdX2UKGgGR0BwyPEwWWQfaAdL9GgIR0CRrIISUTtcdX2UKGgGR0BxMh0YCQtBaAdNMQFoCEdAka0KYRdyDXV9lChoBkdAb5xGrCFbmmgHS+doCEdAka1Hz19ORHV9lChoBkdAcEsG7Bfrr2gHTWADaAhHQJGuHF+/gzh1fZQoaAZHQHILidrftQdoB00pAWgIR0CRriID5j6OdX2UKGgGR0BzkUVRDTjOaAdNAQFoCEdAka7L7Gecx3V9lChoBkdAcZuF6zE74mgHS/poCEdAka8KVpsXSHV9lChoBkdAcxfSy+pOvmgHTQEBaAhHQJGw//aQFLZ1fZQoaAZHQG5BBMi8nNRoB0vqaAhHQJGxU6mwaBJ1fZQoaAZHQHG47pqynk1oB00IAWgIR0CRskCa7VawdX2UKGgGR0BzhElPacqfaAdL72gIR0CRspQnhKlIdX2UKGgGR0Bx01S3solVaAdNbgFoCEdAkbKeQU5+6XV9lChoBkdAcjLwvQF9r2gHTSoBaAhHQJGyvrTpgTh1fZQoaAZHQG3U6MrEtNBoB00IAWgIR0CRstqEvkBCdX2UKGgGR0BwL21+iJwbaAdNSwFoCEdAkbQNMXaakXV9lChoBkdAcf9YgaFVUGgHTRMBaAhHQJG0vKB/Zuh1fZQoaAZHQHL9jWsijcpoB00HAWgIR0CRtWssxwhodX2UKGgGR0Bt4Cbz9S/CaAdNBAFoCEdAkbZB5LRKH3V9lChoBkdAcrbd/rjYI2gHTSMBaAhHQJG2Sd5IH1R1fZQoaAZHQHGci9/SYw9oB01eAWgIR0CRtqK9wm3OdX2UKGgGR0A09k/8l5WzaAdLpmgIR0CRt3QKKHfudX2UKGgGR0ByPvPD50r9aAdNLwFoCEdAkbfSk9ECvHV9lChoBkdAcN1zDn/1hGgHS/1oCEdAkbjW1YyO73V9lChoBkdAbwpc4YJmd2gHTQcBaAhHQJG6dXhfjS51fZQoaAZHQHKcT8cdYGNoB00lAmgIR0CRuoMbFS88dX2UKGgGR0Bxzl08vEjxaAdNCQFoCEdAkc+c7yQPqnV9lChoBkdAcEtIH1OCXmgHTQcBaAhHQJHPrQ+lj3F1fZQoaAZHQHFbiMxXXAdoB00nAWgIR0CR0ALKV6eHdX2UKGgGR0BwHUeV9nbqaAdNYgFoCEdAkdCLDuSfUXV9lChoBkdASd6a/h2nsWgHS7NoCEdAkdDq8g6ltXV9lChoBkdAcmewrDqGDmgHTTACaAhHQJHRJkMCtA91fZQoaAZHQG2y6bvw3HdoB00xAWgIR0CR0eFdcB2fdX2UKGgGR0BzhbyPMjeLaAdNIQFoCEdAkdIMvysjmnV9lChoBkdAcBer7wazeGgHTTEBaAhHQJHTGZiNKiB1fZQoaAZHQHFvLV4HHFRoB00VAWgIR0CR0yG21D0EdX2UKGgGR0BP67aIvalDaAdLsmgIR0CR1CVurIYFdX2UKGgGR0BxKkGpuMuOaAdNQAFoCEdAkdRQRK6FunV9lChoBkdAc3kokRjBmGgHTSwBaAhHQJHU88uBczJ1fZQoaAZHQHCJCmdiDuloB01AAWgIR0CR1eFC9h7WdX2UKGgGR0Bv5S/fwZwXaAdL92gIR0CR1nkzoEB9dX2UKGgGR0BwF/R+jM3ZaAdL/WgIR0CR1pgNPP9ldX2UKGgGR0Bwr8oWpIczaAdL72gIR0CR1yNh3JPqdX2UKGgGR0BwpECLdepoaAdNSQFoCEdAkdcg9RrJsHV9lChoBkdAboSY7aIvamgHTR0BaAhHQJHXUa1kUbl1fZQoaAZHQG9XevhZQpFoB00AAWgIR0CR1/TTvy9VdX2UKGgGR0Bu8gEwFkhBaAdNLwFoCEdAkdhGBvrGBHV9lChoBkdAcDYEWqLjxWgHS/BoCEdAkdipZ4fOlnV9lChoBkdAbe3J6po9LmgHS+doCEdAkdlu2Zy+6HV9lChoBkdAc1/cYIjW1GgHTToBaAhHQJHZmNZNfw91fZQoaAZHQHOLqmj0tiBoB00gAWgIR0CR2amyxA0LdX2UKGgGR0BuuDWGyon8aAdL92gIR0CR2u1UlzEKdX2UKGgGR0BxHwO9WZJDaAdNJAFoCEdAkdr7XlKbrnV9lChoBkdAcIBE5yU9p2gHS/JoCEdAkdtY5o4+83V9lChoBkdAcFTOPNmlImgHTRUBaAhHQJHbk+/xlQN1fZQoaAZHQHD2peeFtbdoB00MAWgIR0CR3Our6tT2dX2UKGgGR0BxzFbD/EOzaAdL+WgIR0CR3PP8yeqadX2UKGgGR0BwhiX0Gu9waAdL9WgIR0CR3Xoc7yQQdX2UKGgGR0BLx9YW+GoKaAdLwmgIR0CR3t6Rhc7hdX2UKGgGR0BuEhzq8lHCaAdNRQFoCEdAkd8yVfNRnHV9lChoBkdAchnaQmu1W2gHTQ0BaAhHQJHf6BVdX1d1fZQoaAZHQG8Io8p1A7hoB00iAWgIR0CR4BhESdvsdX2UKGgGR0A7tV+7UXpGaAdLwGgIR0CR4FyyUs4DdX2UKGgGR0Bw+z0+TvAoaAdNXQFoCEdAkeB8sQNCq3V9lChoBkdAbOeFGoaUA2gHTQEBaAhHQJHghZ9uxbB1fZQoaAZHQG1yGmk30f5oB00AAWgIR0CR4LBTn7pFdX2UKGgGR0BwbrbDdgv2aAdNbQFoCEdAkeEYuK4x13V9lChoBkdAcXntwJgLJGgHTWMBaAhHQJHhc176YVt1fZQoaAZHQG9dEWhysCFoB00nAWgIR0CR4ud69kBkdX2UKGgGR0BxoNq59Vm0aAdNFgFoCEdAkeLgG8mKInV9lChoBkdAcCVCrcTJyWgHTQQBaAhHQJHj8wVTJhh1fZQoaAZHQG6+fD+BH09oB006AWgIR0CR5AyeI2wWdX2UKGgGR0ByGlOM2m52aAdNFQFoCEdAkeRYVVPva3V9lChoBkdAbdqyon8baWgHTRIBaAhHQJHkz7Ikqtp1fZQoaAZHQHLC7OeJ53VoB0vpaAhHQJHmhZxJd0J1fZQoaAZHQHBf0gbIcR1oB00KAWgIR0CR56cTJyQxdX2UKGgGR0BvrtFOO802aAdNHwFoCEdAkeexnvlU63V9lChoBkdAcHpwKSgXdmgHTUgBaAhHQJHn6EUTL4h1fZQoaAZHQHHcC2lVLjBoB00hAWgIR0CR5+7hegL7dX2UKGgGR0BuYsU47zTXaAdNQgFoCEdAkegIX9BKMHV9lChoBkdAcUmLl3hXKmgHTRYBaAhHQJHolVAAyVR1fZQoaAZHQHDHMslLOA1oB01AAWgIR0CR6T5eqrBCdX2UKGgGR0By4/Lidat+aAdNWAFoCEdAkemV7x/d7HV9lChoBkdAbm/4iX6ZY2gHTQsBaAhHQJHqNBhQWN51fZQoaAZHQHMOz28IzFdoB00MAWgIR0CR6jI3R5TqdX2UKGgGR0BwCGEoOQQuaAdL/WgIR0CR6tQPI4lydX2UKGgGR0BxkOoHcDbKaAdNZwFoCEdAkesDtTkyUXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |