File size: 9,554 Bytes
6542487
 
259f9b9
 
 
 
 
 
 
6542487
259f9b9
 
 
 
11679cd
d2173fe
259f9b9
11679cd
259f9b9
d2173fe
 
259f9b9
 
d2173fe
2106e4a
d2173fe
 
259f9b9
d2173fe
259f9b9
d2173fe
259f9b9
d2173fe
 
259f9b9
 
cae3fdf
259f9b9
 
 
6542487
 
d2173fe
 
6542487
 
 
 
 
 
 
 
d2173fe
6542487
 
 
 
259f9b9
6542487
 
 
 
 
 
 
 
 
d2173fe
 
 
 
 
 
 
 
 
6542487
 
 
 
 
 
f4b99cd
 
6542487
 
 
 
d2173fe
 
6542487
 
 
 
 
d2173fe
 
 
 
259f9b9
0949dd4
d2173fe
6542487
89be04c
259f9b9
0949dd4
259f9b9
 
 
 
 
 
 
 
 
 
d2173fe
 
 
 
 
 
 
259f9b9
d2173fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259f9b9
d2173fe
 
 
 
 
 
 
 
 
 
 
 
 
 
259f9b9
 
d2173fe
259f9b9
6542487
 
259f9b9
6542487
259f9b9
 
d2173fe
259f9b9
 
 
 
 
d2173fe
259f9b9
 
 
 
 
 
 
d2173fe
259f9b9
d2173fe
 
 
 
259f9b9
d2173fe
259f9b9
 
 
 
 
 
 
d2173fe
 
 
 
 
 
 
 
 
 
 
 
6542487
d2173fe
 
259f9b9
 
d2173fe
259f9b9
d2173fe
259f9b9
 
d2173fe
 
259f9b9
d2173fe
bab13ec
d2173fe
 
259f9b9
 
 
d2173fe
 
259f9b9
 
 
bab13ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from copy import deepcopy

import hydra

import time

from typing import List, Dict, Optional, Any

from langchain import PromptTemplate
import langchain
from langchain.schema import HumanMessage, AIMessage, SystemMessage

from flows.base_flows.abstract import AtomicFlow

from flows.utils import logging
from flows.messages.flow_message import UpdateMessage_ChatMessage

log = logging.get_logger(__name__)

# ToDo: Add support for demonstrations


class OpenAIChatAtomicFlow(AtomicFlow):
    REQUIRED_KEYS_CONFIG = ["model_name", "generation_parameters"]
    REQUIRED_KEYS_CONSTRUCTOR = ["system_message_prompt_template",
                            "human_message_prompt_template",
                            "query_message_prompt_template"]

    SUPPORTS_CACHING: bool = True

    api_keys: Dict[str, str]

    system_message_prompt_template: PromptTemplate
    human_message_prompt_template: PromptTemplate

    query_message_prompt_template: Optional[PromptTemplate] = None
    # demonstrations: GenericDemonstrationsDataset = None
    demonstrations_response_template: PromptTemplate = None

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.api_keys = None

        assert self.flow_config["name"] not in [
            "system",
            "user",
            "assistant",
        ], f"Flow name '{self.flow_config['name']}' cannot be 'system', 'user' or 'assistant'"

    def set_up_flow_state(self):
        super().set_up_flow_state()
        self.flow_state["previous_messages"] = []

    @classmethod
    def _set_up_prompts(cls, config):
        kwargs = {}

        kwargs["system_message_prompt_template"] = \
            hydra.utils.instantiate(config['system_message_prompt_template'], _convert_="partial")
        kwargs["query_message_prompt_template"] = \
            hydra.utils.instantiate(config['query_message_prompt_template'], _convert_="partial")
        kwargs["human_message_prompt_template"] = \
            hydra.utils.instantiate(config['human_message_prompt_template'], _convert_="partial")

        return kwargs

    # @classmethod
    # def _set_up_demonstration_templates(cls, config):
    #     kwargs = {}
    #
    #     if "demonstrations_response_template" in config:
    #         kwargs["demonstrations_response_template"] = \
    #             hydra.utils.instantiate(config['demonstrations_response_template'], _convert_="partial")
    #
    #     return kwargs

    @classmethod
    def instantiate_from_config(cls, config):
        flow_config = deepcopy(config)

        kwargs = {"flow_config": flow_config}
        kwargs["input_data_transformations"] = cls._set_up_data_transformations(config["input_data_transformations"])
        kwargs["output_data_transformations"] = cls._set_up_data_transformations(config["output_data_transformations"])

        # ~~~ Set up prompts ~~~
        kwargs.update(cls._set_up_prompts(flow_config))

        # # ~~~ Set up demonstration templates ~~~
        # kwargs.update(cls._set_up_demonstration_templates(flow_config))

        # ~~~ Instantiate flow ~~~
        return cls(**kwargs)

    def _is_conversation_initialized(self):
        if len(self.flow_state["previous_messages"]) > 0:
            return True

        return False

    def get_input_keys(self, data: Optional[Dict[str, Any]] = None):
        """Returns the expected inputs for the flow given the current state and, optionally, the input data"""
        if self._is_conversation_initialized():
            return self.flow_config["default_human_input_keys"]
        else:
            return self.flow_config["input_keys"]

    @staticmethod
    def _get_message(prompt_template, input_data: Dict[str, Any]):
        template_kwargs = {}
        for input_variable in prompt_template.input_variables:
            template_kwargs[input_variable] = input_data[input_variable]

        msg_content = prompt_template.format(**template_kwargs)
        return msg_content

    # def _get_demonstration_query_message_content(self, sample_data: Dict):
    #     input_variables = self.query_message_prompt_template.input_variables
    #     return self.query_message_prompt_template.format(**{k: sample_data[k] for k in input_variables}), []
    #
    # def _get_demonstration_response_message_content(self, sample_data: Dict):
    #     input_variables = self.demonstrations_response_template.input_variables
    #     return self.demonstrations_response_template.format(**{k: sample_data[k] for k in input_variables}), []

    # def _add_demonstrations(self):
    #     if self.demonstrations is not None:
    #         for example in self.demonstrations:
    #             query, parents = self._get_demonstration_query_message_content(example)
    #             response, parents = self._get_demonstration_response_message_content(example)
    #
    #             self._log_chat_message(content=query,
    #                                    role=self.user_name,
    #                                    parent_message_ids=parents)
    #
    #             self._log_chat_message(content=response,
    #                                    role=self.assistant_name,
    #                                    parent_message_ids=parents)

    def _state_update_add_chat_message(self,
                                       role: str,
                                       content: str) -> None:

        # Add the message to the previous messages list
        if role == self.flow_config["system_name"]:
            self.flow_state["previous_messages"].append(SystemMessage(content=content))
        elif role == self.flow_config["user_name"]:
            self.flow_state["previous_messages"].append(HumanMessage(content=content))
        elif role == self.flow_config["assistant_name"]:
            self.flow_state["previous_messages"].append(AIMessage(content=content))
        else:
            raise Exception(f"Invalid role: `{role}`.\n"
                            f"Role should be one of: "
                            f"`{self.flow_config['system_name']}`, "
                            f"`{self.flow_config['user_name']}`, "
                            f"`{self.flow_config['assistant_name']}`")

        # Log the update to the flow messages list
        chat_message = UpdateMessage_ChatMessage(
            created_by=self.flow_config["name"],
            updated_flow=self.flow_config["name"],
            role=role,
            content=content,
        )
        self._log_message(chat_message)

    def _call(self):
        api_key = self.api_keys["openai"]

        backend = langchain.chat_models.ChatOpenAI(
            model_name=self.flow_config["model_name"],
            openai_api_key=api_key,
            **self.flow_config["generation_parameters"],
        )

        messages = self.flow_state["previous_messages"]

        _success = False
        attempts = 1
        error = None
        response = None
        while attempts <= self.flow_config['n_api_retries']:
            try:
                response = backend(messages).content
                _success = True
                break
            except Exception as e:
                log.error(
                    f"Error {attempts} in calling backend: {e}. Key used: `{api_key}`. "
                    f"Retrying in {self.flow_config['wait_time_between_retries']} seconds..."
                )
                # log.error(
                #     f"The API call raised an exception with the following arguments: "
                #     f"\n{self.flow_state['history'].to_string()}"
                # ) # ToDo: Make this message more user-friendly
                attempts += 1
                time.sleep(self.flow_config['wait_time_between_retries'])
                error = e

        if not _success:
            raise error

        return response

    def _initialize_conversation(self, input_data: Dict[str, Any]):
        # ~~~ Add the system message ~~~
        system_message_content = self._get_message(self.system_message_prompt_template, input_data)

        self._state_update_add_chat_message(content=system_message_content,
                                            role=self.flow_config["system_name"])

        # # ~~~ Add the demonstration query-response tuples (if any) ~~~
        # self._add_demonstrations()
        # self._update_state(update_data={"conversation_initialized": True})

    def _process_input(self, input_data: Dict[str, Any]):
        if self._is_conversation_initialized():
            # Construct the message using the human message prompt template
            user_message_content = self._get_message(self.human_message_prompt_template, input_data)

        else:
            # Initialize the conversation (add the system message, and potentially the demonstrations)
            self._initialize_conversation(input_data)
            # Construct the message using the query message prompt template
            user_message_content = self._get_message(self.query_message_prompt_template, input_data)

        self._state_update_add_chat_message(role=self.flow_config["user_name"],
                                            content=user_message_content)

    def run(self,
            input_data: Dict[str, Any]) -> Dict[str, Any]:
        # ~~~ Process input ~~~
        self._process_input(input_data)

        # ~~~ Call ~~~
        response = self._call()
        self._state_update_add_chat_message(
            role=self.flow_config["assistant_name"],
            content=response
        )

        return {"api_output": response}