File size: 14,057 Bytes
06ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# coding=utf-8
# Copyright 2020, The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Bort checkpoint."""


import argparse
import os

import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn

from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
    BertIntermediate,
    BertLayer,
    BertOutput,
    BertSelfAttention,
    BertSelfOutput,
)
from transformers.utils import logging


if version.parse(nlp.__version__) != version.parse("0.8.3"):
    raise Exception("requires gluonnlp == 0.8.3")

if version.parse(mx.__version__) != version.parse("1.5.0"):
    raise Exception("requires mxnet == 1.5.0")

logging.set_verbosity_info()
logger = logging.get_logger(__name__)

SAMPLE_TEXT = "The Nymphenburg Palace is a beautiful palace in Munich!"


def convert_bort_checkpoint_to_pytorch(bort_checkpoint_path: str, pytorch_dump_folder_path: str):
    """
    Convert the original Bort checkpoint (based on MXNET and Gluonnlp) to our BERT structure-
    """

    # Original Bort configuration
    bort_4_8_768_1024_hparams = {
        "attention_cell": "multi_head",
        "num_layers": 4,
        "units": 1024,
        "hidden_size": 768,
        "max_length": 512,
        "num_heads": 8,
        "scaled": True,
        "dropout": 0.1,
        "use_residual": True,
        "embed_size": 1024,
        "embed_dropout": 0.1,
        "word_embed": None,
        "layer_norm_eps": 1e-5,
        "token_type_vocab_size": 2,
    }

    predefined_args = bort_4_8_768_1024_hparams

    # Let's construct the original Bort model here
    # Taken from official BERT implementation, see:
    # https://github.com/alexa/bort/blob/master/bort/bort.py
    encoder = BERTEncoder(
        attention_cell=predefined_args["attention_cell"],
        num_layers=predefined_args["num_layers"],
        units=predefined_args["units"],
        hidden_size=predefined_args["hidden_size"],
        max_length=predefined_args["max_length"],
        num_heads=predefined_args["num_heads"],
        scaled=predefined_args["scaled"],
        dropout=predefined_args["dropout"],
        output_attention=False,
        output_all_encodings=False,
        use_residual=predefined_args["use_residual"],
        activation=predefined_args.get("activation", "gelu"),
        layer_norm_eps=predefined_args.get("layer_norm_eps", None),
    )

    # Vocab information needs to be fetched first
    # It's the same as RoBERTa, so RobertaTokenizer can be used later
    vocab_name = "openwebtext_ccnews_stories_books_cased"

    # Specify download folder to Gluonnlp's vocab
    gluon_cache_dir = os.path.join(get_home_dir(), "models")
    bort_vocab = _load_vocab(vocab_name, None, gluon_cache_dir, cls=Vocab)

    original_bort = nlp.model.BERTModel(
        encoder,
        len(bort_vocab),
        units=predefined_args["units"],
        embed_size=predefined_args["embed_size"],
        embed_dropout=predefined_args["embed_dropout"],
        word_embed=predefined_args["word_embed"],
        use_pooler=False,
        use_token_type_embed=False,
        token_type_vocab_size=predefined_args["token_type_vocab_size"],
        use_classifier=False,
        use_decoder=False,
    )

    original_bort.load_parameters(bort_checkpoint_path, cast_dtype=True, ignore_extra=True)
    params = original_bort._collect_params_with_prefix()

    # Build our config 🤗
    hf_bort_config_json = {
        "architectures": ["BertForMaskedLM"],
        "attention_probs_dropout_prob": predefined_args["dropout"],
        "hidden_act": "gelu",
        "hidden_dropout_prob": predefined_args["dropout"],
        "hidden_size": predefined_args["embed_size"],
        "initializer_range": 0.02,
        "intermediate_size": predefined_args["hidden_size"],
        "layer_norm_eps": predefined_args["layer_norm_eps"],
        "max_position_embeddings": predefined_args["max_length"],
        "model_type": "bort",
        "num_attention_heads": predefined_args["num_heads"],
        "num_hidden_layers": predefined_args["num_layers"],
        "pad_token_id": 1,  # 2 = BERT, 1 = RoBERTa
        "type_vocab_size": 1,  # 2 = BERT, 1 = RoBERTa
        "vocab_size": len(bort_vocab),
    }

    hf_bort_config = BertConfig.from_dict(hf_bort_config_json)
    hf_bort_model = BertForMaskedLM(hf_bort_config)
    hf_bort_model.eval()

    # Parameter mapping table (Gluonnlp to Transformers)
    # * denotes layer index
    #
    # | Gluon Parameter                                                | Transformers Parameter
    # | -------------------------------------------------------------- | ----------------------
    # | `encoder.layer_norm.beta`                                      | `bert.embeddings.LayerNorm.bias`
    # | `encoder.layer_norm.gamma`                                     | `bert.embeddings.LayerNorm.weight`
    # | `encoder.position_weight`                                      | `bert.embeddings.position_embeddings.weight`
    # | `word_embed.0.weight`                                          | `bert.embeddings.word_embeddings.weight`
    # | `encoder.transformer_cells.*.attention_cell.proj_key.bias`     | `bert.encoder.layer.*.attention.self.key.bias`
    # | `encoder.transformer_cells.*.attention_cell.proj_key.weight`   | `bert.encoder.layer.*.attention.self.key.weight`
    # | `encoder.transformer_cells.*.attention_cell.proj_query.bias`   | `bert.encoder.layer.*.attention.self.query.bias`
    # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
    # | `encoder.transformer_cells.*.attention_cell.proj_value.bias`   | `bert.encoder.layer.*.attention.self.value.bias`
    # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
    # | `encoder.transformer_cells.*.ffn.ffn_2.bias`                   | `bert.encoder.layer.*.attention.output.dense.bias`
    # | `encoder.transformer_cells.*.ffn.ffn_2.weight`                 | `bert.encoder.layer.*.attention.output.dense.weight`
    # | `encoder.transformer_cells.*.layer_norm.beta`                  | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
    # | `encoder.transformer_cells.*.layer_norm.gamma`                 | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
    # | `encoder.transformer_cells.*.ffn.ffn_1.bias`                   | `bert.encoder.layer.*.intermediate.dense.bias`
    # | `encoder.transformer_cells.*.ffn.ffn_1.weight`                 | `bert.encoder.layer.*.intermediate.dense.weight`
    # | `encoder.transformer_cells.*.ffn.layer_norm.beta`              | `bert.encoder.layer.*.output.LayerNorm.bias`
    # | `encoder.transformer_cells.*.ffn.layer_norm.gamma`             | `bert.encoder.layer.*.output.LayerNorm.weight`
    # | `encoder.transformer_cells.*.proj.bias`                        | `bert.encoder.layer.*.output.dense.bias`
    # | `encoder.transformer_cells.*.proj.weight`                      | `bert.encoder.layer.*.output.dense.weight`

    # Helper function to convert MXNET Arrays to PyTorch
    def to_torch(mx_array) -> nn.Parameter:
        return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy()))

    # Check param shapes and map new HF param back
    def check_and_map_params(hf_param, gluon_param):
        shape_hf = hf_param.shape

        gluon_param = to_torch(params[gluon_param])
        shape_gluon = gluon_param.shape

        assert (
            shape_hf == shape_gluon
        ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"

        return gluon_param

    hf_bort_model.bert.embeddings.word_embeddings.weight = check_and_map_params(
        hf_bort_model.bert.embeddings.word_embeddings.weight, "word_embed.0.weight"
    )
    hf_bort_model.bert.embeddings.position_embeddings.weight = check_and_map_params(
        hf_bort_model.bert.embeddings.position_embeddings.weight, "encoder.position_weight"
    )
    hf_bort_model.bert.embeddings.LayerNorm.bias = check_and_map_params(
        hf_bort_model.bert.embeddings.LayerNorm.bias, "encoder.layer_norm.beta"
    )
    hf_bort_model.bert.embeddings.LayerNorm.weight = check_and_map_params(
        hf_bort_model.bert.embeddings.LayerNorm.weight, "encoder.layer_norm.gamma"
    )

    # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
    hf_bort_model.bert.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
        hf_bort_model.bert.embeddings.token_type_embeddings.weight.data
    )

    for i in range(hf_bort_config.num_hidden_layers):
        layer: BertLayer = hf_bort_model.bert.encoder.layer[i]

        # self attention
        self_attn: BertSelfAttention = layer.attention.self

        self_attn.key.bias.data = check_and_map_params(
            self_attn.key.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias"
        )

        self_attn.key.weight.data = check_and_map_params(
            self_attn.key.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight"
        )
        self_attn.query.bias.data = check_and_map_params(
            self_attn.query.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias"
        )
        self_attn.query.weight.data = check_and_map_params(
            self_attn.query.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight"
        )
        self_attn.value.bias.data = check_and_map_params(
            self_attn.value.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias"
        )
        self_attn.value.weight.data = check_and_map_params(
            self_attn.value.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight"
        )

        # self attention output
        self_output: BertSelfOutput = layer.attention.output

        self_output.dense.bias = check_and_map_params(
            self_output.dense.bias, f"encoder.transformer_cells.{i}.proj.bias"
        )
        self_output.dense.weight = check_and_map_params(
            self_output.dense.weight, f"encoder.transformer_cells.{i}.proj.weight"
        )
        self_output.LayerNorm.bias = check_and_map_params(
            self_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.layer_norm.beta"
        )
        self_output.LayerNorm.weight = check_and_map_params(
            self_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.layer_norm.gamma"
        )

        # intermediate
        intermediate: BertIntermediate = layer.intermediate

        intermediate.dense.bias = check_and_map_params(
            intermediate.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_1.bias"
        )
        intermediate.dense.weight = check_and_map_params(
            intermediate.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_1.weight"
        )

        # output
        bert_output: BertOutput = layer.output

        bert_output.dense.bias = check_and_map_params(
            bert_output.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_2.bias"
        )
        bert_output.dense.weight = check_and_map_params(
            bert_output.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_2.weight"
        )
        bert_output.LayerNorm.bias = check_and_map_params(
            bert_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.ffn.layer_norm.beta"
        )
        bert_output.LayerNorm.weight = check_and_map_params(
            bert_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma"
        )

    # Save space and energy 🎄
    hf_bort_model.half()

    # Compare output of both models
    tokenizer = RobertaTokenizer.from_pretrained("roberta-base")

    input_ids = tokenizer.encode_plus(SAMPLE_TEXT)["input_ids"]

    # Get gluon output
    gluon_input_ids = mx.nd.array([input_ids])
    output_gluon = original_bort(inputs=gluon_input_ids, token_types=[])

    # Get Transformer output (save and reload model again)
    hf_bort_model.save_pretrained(pytorch_dump_folder_path)
    hf_bort_model = BertModel.from_pretrained(pytorch_dump_folder_path)
    hf_bort_model.eval()

    input_ids = tokenizer.encode_plus(SAMPLE_TEXT, return_tensors="pt")
    output_hf = hf_bort_model(**input_ids)[0]

    gluon_layer = output_gluon[0].asnumpy()
    hf_layer = output_hf[0].detach().numpy()

    max_absolute_diff = np.max(np.abs(hf_layer - gluon_layer)).item()
    success = np.allclose(gluon_layer, hf_layer, atol=1e-3)

    if success:
        print("✔️ Both model do output the same tensors")
    else:
        print("❌ Both model do **NOT** output the same tensors")
        print("Absolute difference is:", max_absolute_diff)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
    )
    parser.add_argument(
        "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
    )
    args = parser.parse_args()
    convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)