File size: 10,031 Bytes
06ba6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# coding=utf-8
# Copyright 2021 T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model ByT5."""
import warnings
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
class ByT5Tokenizer(PreTrainedTokenizer):
"""
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
extra_ids (`int`, *optional*, defaults to 125):
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary
like in ByT5 preprocessing see
[here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
extra_ids=125,
additional_special_tokens=None,
**kwargs,
) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
# Check that we have the right number of extra_id special tokens
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens"
)
pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
# we force left and right stripping for backward compatibility. The byt5tests depend on this.
eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
# unk token needs to be in the vocab with correct index
self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
self.offset = len(self._added_tokens_decoder)
self._utf_vocab_size = 2**8 # utf is 8 bits
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
extra_ids=0,
additional_special_tokens=additional_special_tokens, # TODO extra ids are not used :sweatywmile:
**kwargs,
)
@property
def vocab_size(self):
return self._utf_vocab_size
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
vocab.update(self.added_tokens_encoder)
return vocab
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = [chr(i) for i in text.encode("utf-8")]
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 1:
token_id = None
else:
token_id = ord(token) + self.offset
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = chr(index - self.offset)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
bstring = b""
for token in tokens:
if token in self.added_tokens_decoder:
tok_string = self.added_tokens_decoder[token].encode("utf-8")
elif token in self.added_tokens_encoder:
tok_string = token.encode("utf-8")
else:
tok_string = bytes([ord(token)])
bstring += tok_string
string = bstring.decode("utf-8", errors="ignore")
return string
# ByT5Tokenizer has no vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return ()
|