File size: 10,031 Bytes
06ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# coding=utf-8
# Copyright 2021 T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model ByT5."""


import warnings
from typing import List, Optional, Tuple

from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging


logger = logging.get_logger(__name__)


class ByT5Tokenizer(PreTrainedTokenizer):
    """
    Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the end of sequence.
            The token used is the `sep_token`.

            </Tip>

        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        pad_token (`str`, *optional*, defaults to `"<pad>"`):
            The token used for padding, for example when batching sequences of different lengths.
        extra_ids (`int`, *optional*, defaults to 125):
            Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
            accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
            indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary
            like in ByT5 preprocessing see
            [here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
        additional_special_tokens (`List[str]`, *optional*):
            Additional special tokens used by the tokenizer.
    """

    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        eos_token="</s>",
        unk_token="<unk>",
        pad_token="<pad>",
        extra_ids=125,
        additional_special_tokens=None,
        **kwargs,
    ) -> None:
        # Add extra_ids to the special token list
        if extra_ids > 0 and additional_special_tokens is None:
            additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
        elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
            # Check that we have the right number of extra_id special tokens
            extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
            if extra_tokens != extra_ids:
                raise ValueError(
                    f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
                    " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
                    " extra_ids tokens"
                )

        pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
        # we force left and right stripping for backward compatibility. The byt5tests depend on this.
        eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
        unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
        # unk token needs to be in the vocab with correct index
        self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
        self.offset = len(self._added_tokens_decoder)
        self._utf_vocab_size = 2**8  # utf is 8 bits
        super().__init__(
            eos_token=eos_token,
            unk_token=unk_token,
            pad_token=pad_token,
            extra_ids=0,
            additional_special_tokens=additional_special_tokens,  # TODO extra ids are not used :sweatywmile:
            **kwargs,
        )

    @property
    def vocab_size(self):
        return self._utf_vocab_size

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        # normal case: some special tokens
        if token_ids_1 is None:
            return ([0] * len(token_ids_0)) + [1]
        return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]

    def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
        """Do not add eos again if user already added it."""
        if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
            warnings.warn(
                f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
                " eos tokens being added."
            )
            return token_ids
        else:
            return token_ids + [self.eos_token_id]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not
        make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.
        """
        eos = [self.eos_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + eos) * [0]
        return len(token_ids_0 + eos + token_ids_1 + eos) * [0]

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A sequence has the following format:

        - single sequence: `X </s>`
        - pair of sequences: `A </s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        token_ids_0 = self._add_eos_if_not_present(token_ids_0)
        if token_ids_1 is None:
            return token_ids_0
        else:
            token_ids_1 = self._add_eos_if_not_present(token_ids_1)
            return token_ids_0 + token_ids_1

    def _tokenize(self, text: str) -> List[str]:
        """Take as input a string and return a list of strings (tokens) for words/sub-words"""
        tokens = [chr(i) for i in text.encode("utf-8")]
        return tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""

        if len(token) != 1:
            token_id = None
        else:
            token_id = ord(token) + self.offset

        return token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        token = chr(index - self.offset)
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        bstring = b""
        for token in tokens:
            if token in self.added_tokens_decoder:
                tok_string = self.added_tokens_decoder[token].encode("utf-8")
            elif token in self.added_tokens_encoder:
                tok_string = token.encode("utf-8")
            else:
                tok_string = bytes([ord(token)])
            bstring += tok_string
        string = bstring.decode("utf-8", errors="ignore")
        return string

    # ByT5Tokenizer has no vocab file
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        return ()