File size: 38,009 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
DETR model and criterion classes.
"""
import copy
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from typing import List
from util import box_ops, checkpoint
from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
accuracy, get_world_size, interpolate, get_rank,
is_dist_avail_and_initialized, inverse_sigmoid)
from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou
from .backbone import build_backbone
from .matcher import build_matcher
from .deformable_transformer_plus import build_deforamble_transformer, pos2posemb
from .qim import build as build_query_interaction_layer
from .deformable_detr import SetCriterion, MLP, sigmoid_focal_loss
class ClipMatcher(SetCriterion):
def __init__(self, num_classes,
matcher,
weight_dict,
losses):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__(num_classes, matcher, weight_dict, losses)
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.focal_loss = True
self.losses_dict = {}
self._current_frame_idx = 0
def initialize_for_single_clip(self, gt_instances: List[Instances]):
self.gt_instances = gt_instances
self.num_samples = 0
self.sample_device = None
self._current_frame_idx = 0
self.losses_dict = {}
def _step(self):
self._current_frame_idx += 1
def calc_loss_for_track_scores(self, track_instances: Instances):
frame_id = self._current_frame_idx - 1
gt_instances = self.gt_instances[frame_id]
outputs = {
'pred_logits': track_instances.track_scores[None],
}
device = track_instances.track_scores.device
num_tracks = len(track_instances)
src_idx = torch.arange(num_tracks, dtype=torch.long, device=device)
tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks
track_losses = self.get_loss('labels',
outputs=outputs,
gt_instances=[gt_instances],
indices=[(src_idx, tgt_idx)],
num_boxes=1)
self.losses_dict.update(
{'frame_{}_track_{}'.format(frame_id, key): value for key, value in
track_losses.items()})
def get_num_boxes(self, num_samples):
num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_boxes)
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
return num_boxes
def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs):
loss_map = {
'labels': self.loss_labels,
'cardinality': self.loss_cardinality,
'boxes': self.loss_boxes,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs)
def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
"""
# We ignore the regression loss of the track-disappear slots.
#TODO: Make this filter process more elegant.
filtered_idx = []
for src_per_img, tgt_per_img in indices:
keep = tgt_per_img != -1
filtered_idx.append((src_per_img[keep], tgt_per_img[keep]))
indices = filtered_idx
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes'][idx]
target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0)
# for pad target, don't calculate regression loss, judged by whether obj_id=-1
target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16)
mask = (target_obj_ids != -1)
loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none')
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
box_ops.box_cxcywh_to_xyxy(src_boxes[mask]),
box_ops.box_cxcywh_to_xyxy(target_boxes[mask])))
losses = {}
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
losses['loss_giou'] = loss_giou.sum() / num_boxes
return losses
def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
dtype=torch.int64, device=src_logits.device)
# The matched gt for disappear track query is set -1.
labels = []
for gt_per_img, (_, J) in zip(gt_instances, indices):
labels_per_img = torch.ones_like(J)
# set labels of track-appear slots to 0.
if len(gt_per_img) > 0:
labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]]
labels.append(labels_per_img)
target_classes_o = torch.cat(labels)
target_classes[idx] = target_classes_o
if self.focal_loss:
gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class
gt_labels_target = gt_labels_target.to(src_logits)
loss_ce = sigmoid_focal_loss(src_logits.flatten(1),
gt_labels_target.flatten(1),
alpha=0.25,
gamma=2,
num_boxes=num_boxes, mean_in_dim1=False)
loss_ce = loss_ce.sum()
else:
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {'loss_ce': loss_ce}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
return losses
def match_for_single_frame(self, outputs: dict):
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image.
track_instances: Instances = outputs_without_aux['track_instances']
pred_logits_i = track_instances.pred_logits # predicted logits of i-th image.
pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image.
obj_idxes = gt_instances_i.obj_ids
outputs_i = {
'pred_logits': pred_logits_i.unsqueeze(0),
'pred_boxes': pred_boxes_i.unsqueeze(0),
}
# step1. inherit and update the previous tracks.
num_disappear_track = 0
track_instances.matched_gt_idxes[:] = -1
i, j = torch.where(track_instances.obj_idxes[:, None] == obj_idxes)
track_instances.matched_gt_idxes[i] = j
full_track_idxes = torch.arange(len(track_instances), dtype=torch.long, device=pred_logits_i.device)
matched_track_idxes = (track_instances.obj_idxes >= 0) # occu
prev_matched_indices = torch.stack(
[full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1)
# step2. select the unmatched slots.
# note that the FP tracks whose obj_idxes are -2 will not be selected here.
unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1]
# step3. select the untracked gt instances (new tracks).
tgt_indexes = track_instances.matched_gt_idxes
tgt_indexes = tgt_indexes[tgt_indexes != -1]
tgt_state = torch.zeros(len(gt_instances_i), device=pred_logits_i.device)
tgt_state[tgt_indexes] = 1
untracked_tgt_indexes = torch.arange(len(gt_instances_i), device=pred_logits_i.device)[tgt_state == 0]
# untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i))
untracked_gt_instances = gt_instances_i[untracked_tgt_indexes]
def match_for_single_decoder_layer(unmatched_outputs, matcher):
new_track_indices = matcher(unmatched_outputs,
[untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)]
src_idx = new_track_indices[0][0]
tgt_idx = new_track_indices[0][1]
# concat src and tgt.
new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]],
dim=1).to(pred_logits_i.device)
return new_matched_indices
# step4. do matching between the unmatched slots and GTs.
unmatched_outputs = {
'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0),
'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0),
}
new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher)
# step5. update obj_idxes according to the new matching result.
track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long()
track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1]
# step6. calculate iou.
active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0)
active_track_boxes = track_instances.pred_boxes[active_idxes]
if len(active_track_boxes) > 0:
gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]]
active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes)
gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes)
track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes))
# step7. merge the unmatched pairs and the matched pairs.
matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0)
# step8. calculate losses.
self.num_samples += len(gt_instances_i) + num_disappear_track
self.sample_device = pred_logits_i.device
for loss in self.losses:
new_track_loss = self.get_loss(loss,
outputs=outputs_i,
gt_instances=[gt_instances_i],
indices=[(matched_indices[:, 0], matched_indices[:, 1])],
num_boxes=1)
self.losses_dict.update(
{'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()})
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
unmatched_outputs_layer = {
'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0),
'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0),
}
new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher)
matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0)
for loss in self.losses:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss,
aux_outputs,
gt_instances=[gt_instances_i],
indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])],
num_boxes=1, )
self.losses_dict.update(
{'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in
l_dict.items()})
if 'ps_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['ps_outputs']):
ar = torch.arange(len(gt_instances_i), device=obj_idxes.device)
l_dict = self.get_loss('boxes',
aux_outputs,
gt_instances=[gt_instances_i],
indices=[(ar, ar)],
num_boxes=1, )
self.losses_dict.update(
{'frame_{}_ps{}_{}'.format(self._current_frame_idx, i, key): value for key, value in
l_dict.items()})
self._step()
return track_instances
def forward(self, outputs, input_data: dict):
# losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict].
losses = outputs.pop("losses_dict")
num_samples = self.get_num_boxes(self.num_samples)
for loss_name, loss in losses.items():
losses[loss_name] /= num_samples
return losses
class RuntimeTrackerBase(object):
def __init__(self, score_thresh=0.6, filter_score_thresh=0.5, miss_tolerance=10):
self.score_thresh = score_thresh
self.filter_score_thresh = filter_score_thresh
self.miss_tolerance = miss_tolerance
self.max_obj_id = 0
def clear(self):
self.max_obj_id = 0
def update(self, track_instances: Instances):
device = track_instances.obj_idxes.device
track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
new_obj = (track_instances.obj_idxes == -1) & (track_instances.scores >= self.score_thresh)
disappeared_obj = (track_instances.obj_idxes >= 0) & (track_instances.scores < self.filter_score_thresh)
num_new_objs = new_obj.sum().item()
track_instances.obj_idxes[new_obj] = self.max_obj_id + torch.arange(num_new_objs, device=device)
self.max_obj_id += num_new_objs
track_instances.disappear_time[disappeared_obj] += 1
to_del = disappeared_obj & (track_instances.disappear_time >= self.miss_tolerance)
track_instances.obj_idxes[to_del] = -1
class TrackerPostProcess(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
def __init__(self):
super().__init__()
@torch.no_grad()
def forward(self, track_instances: Instances, target_size) -> Instances:
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
out_logits = track_instances.pred_logits
out_bbox = track_instances.pred_boxes
# prob = out_logits.sigmoid()
scores = out_logits[..., 0].sigmoid()
# scores, labels = prob.max(-1)
# convert to [x0, y0, x1, y1] format
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_size
scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes)
boxes = boxes * scale_fct[None, :]
track_instances.boxes = boxes
track_instances.scores = scores
track_instances.labels = torch.full_like(scores, 0)
# track_instances.remove('pred_logits')
# track_instances.remove('pred_boxes')
return track_instances
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class MOTR(nn.Module):
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed,
aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None, use_checkpoint=False, query_denoise=0):
""" Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_classes: number of object classes
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
with_box_refine: iterative bounding box refinement
two_stage: two-stage Deformable DETR
"""
super().__init__()
self.num_queries = num_queries
self.track_embed = track_embed
self.transformer = transformer
hidden_dim = transformer.d_model
self.num_classes = num_classes
self.class_embed = nn.Linear(hidden_dim, num_classes)
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
self.num_feature_levels = num_feature_levels
self.use_checkpoint = use_checkpoint
self.query_denoise = query_denoise
self.position = nn.Embedding(num_queries, 4)
self.yolox_embed = nn.Embedding(1, hidden_dim)
self.query_embed = nn.Embedding(num_queries, hidden_dim)
if query_denoise:
self.refine_embed = nn.Embedding(1, hidden_dim)
if num_feature_levels > 1:
num_backbone_outs = len(backbone.strides)
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = backbone.num_channels[_]
input_proj_list.append(nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
))
for _ in range(num_feature_levels - num_backbone_outs):
input_proj_list.append(nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, hidden_dim),
))
in_channels = hidden_dim
self.input_proj = nn.ModuleList(input_proj_list)
else:
self.input_proj = nn.ModuleList([
nn.Sequential(
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)])
self.backbone = backbone
self.aux_loss = aux_loss
self.with_box_refine = with_box_refine
self.two_stage = two_stage
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
nn.init.uniform_(self.position.weight.data, 0, 1)
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
if with_box_refine:
self.class_embed = _get_clones(self.class_embed, num_pred)
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
# hack implementation for iterative bounding box refinement
self.transformer.decoder.bbox_embed = self.bbox_embed
else:
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
self.transformer.decoder.bbox_embed = None
if two_stage:
# hack implementation for two-stage
self.transformer.decoder.class_embed = self.class_embed
for box_embed in self.bbox_embed:
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
self.post_process = TrackerPostProcess()
self.track_base = RuntimeTrackerBase()
self.criterion = criterion
self.memory_bank = memory_bank
self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length
def _generate_empty_tracks(self, proposals=None):
track_instances = Instances((1, 1))
num_queries, d_model = self.query_embed.weight.shape # (300, 512)
device = self.query_embed.weight.device
if proposals is None:
track_instances.ref_pts = self.position.weight
track_instances.query_pos = self.query_embed.weight
else:
track_instances.ref_pts = torch.cat([self.position.weight, proposals[:, :4]])
track_instances.query_pos = torch.cat([self.query_embed.weight, pos2posemb(proposals[:, 4:], d_model) + self.yolox_embed.weight])
track_instances.output_embedding = torch.zeros((len(track_instances), d_model), device=device)
track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device)
track_instances.iou = torch.ones((len(track_instances),), dtype=torch.float, device=device)
track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device)
track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device)
mem_bank_len = self.mem_bank_len
track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, d_model), dtype=torch.float32, device=device)
track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device)
track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device)
return track_instances.to(self.query_embed.weight.device)
def clear(self):
self.track_base.clear()
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b, }
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
def _forward_single_image(self, samples, track_instances: Instances, gtboxes=None):
features, pos = self.backbone(samples)
src, mask = features[-1].decompose()
assert mask is not None
srcs = []
masks = []
for l, feat in enumerate(features):
src, mask = feat.decompose()
srcs.append(self.input_proj[l](src))
masks.append(mask)
assert mask is not None
if self.num_feature_levels > len(srcs):
_len_srcs = len(srcs)
for l in range(_len_srcs, self.num_feature_levels):
if l == _len_srcs:
src = self.input_proj[l](features[-1].tensors)
else:
src = self.input_proj[l](srcs[-1])
m = samples.mask
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
srcs.append(src)
masks.append(mask)
pos.append(pos_l)
if gtboxes is not None:
n_dt = len(track_instances)
ps_tgt = self.refine_embed.weight.expand(gtboxes.size(0), -1)
query_embed = torch.cat([track_instances.query_pos, ps_tgt])
ref_pts = torch.cat([track_instances.ref_pts, gtboxes])
attn_mask = torch.zeros((len(ref_pts), len(ref_pts)), dtype=bool, device=ref_pts.device)
attn_mask[:n_dt, n_dt:] = True
else:
query_embed = track_instances.query_pos
ref_pts = track_instances.ref_pts
attn_mask = None
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = \
self.transformer(srcs, masks, pos, query_embed, ref_pts=ref_pts,
mem_bank=track_instances.mem_bank, mem_bank_pad_mask=track_instances.mem_padding_mask, attn_mask=attn_mask)
outputs_classes = []
outputs_coords = []
for lvl in range(hs.shape[0]):
if lvl == 0:
reference = init_reference
else:
reference = inter_references[lvl - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.class_embed[lvl](hs[lvl])
tmp = self.bbox_embed[lvl](hs[lvl])
if reference.shape[-1] == 4:
tmp += reference
else:
assert reference.shape[-1] == 2
tmp[..., :2] += reference
outputs_coord = tmp.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_class = torch.stack(outputs_classes)
outputs_coord = torch.stack(outputs_coords)
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
if self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
out['hs'] = hs[-1]
return out
def _post_process_single_image(self, frame_res, track_instances, is_last):
if self.query_denoise > 0:
n_ins = len(track_instances)
ps_logits = frame_res['pred_logits'][:, n_ins:]
ps_boxes = frame_res['pred_boxes'][:, n_ins:]
frame_res['hs'] = frame_res['hs'][:, :n_ins]
frame_res['pred_logits'] = frame_res['pred_logits'][:, :n_ins]
frame_res['pred_boxes'] = frame_res['pred_boxes'][:, :n_ins]
ps_outputs = [{'pred_logits': ps_logits, 'pred_boxes': ps_boxes}]
for aux_outputs in frame_res['aux_outputs']:
ps_outputs.append({
'pred_logits': aux_outputs['pred_logits'][:, n_ins:],
'pred_boxes': aux_outputs['pred_boxes'][:, n_ins:],
})
aux_outputs['pred_logits'] = aux_outputs['pred_logits'][:, :n_ins]
aux_outputs['pred_boxes'] = aux_outputs['pred_boxes'][:, :n_ins]
frame_res['ps_outputs'] = ps_outputs
with torch.no_grad():
if self.training:
track_scores = frame_res['pred_logits'][0, :].sigmoid().max(dim=-1).values
else:
track_scores = frame_res['pred_logits'][0, :, 0].sigmoid()
track_instances.scores = track_scores
track_instances.pred_logits = frame_res['pred_logits'][0]
track_instances.pred_boxes = frame_res['pred_boxes'][0]
track_instances.output_embedding = frame_res['hs'][0]
if self.training:
# the track id will be assigned by the mather.
frame_res['track_instances'] = track_instances
track_instances = self.criterion.match_for_single_frame(frame_res)
else:
# each track will be assigned an unique global id by the track base.
self.track_base.update(track_instances)
if self.memory_bank is not None:
track_instances = self.memory_bank(track_instances)
tmp = {}
tmp['track_instances'] = track_instances
if not is_last:
out_track_instances = self.track_embed(tmp)
frame_res['track_instances'] = out_track_instances
else:
frame_res['track_instances'] = None
return frame_res
@torch.no_grad()
def inference_single_image(self, img, ori_img_size, track_instances=None, proposals=None):
if not isinstance(img, NestedTensor):
img = nested_tensor_from_tensor_list(img)
if track_instances is None:
track_instances = self._generate_empty_tracks(proposals)
else:
track_instances = Instances.cat([
self._generate_empty_tracks(proposals),
track_instances])
res = self._forward_single_image(img,
track_instances=track_instances)
res = self._post_process_single_image(res, track_instances, False)
track_instances = res['track_instances']
track_instances = self.post_process(track_instances, ori_img_size)
ret = {'track_instances': track_instances}
if 'ref_pts' in res:
ref_pts = res['ref_pts']
img_h, img_w = ori_img_size
scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts)
ref_pts = ref_pts * scale_fct[None]
ret['ref_pts'] = ref_pts
return ret
def forward(self, data: dict):
if self.training:
self.criterion.initialize_for_single_clip(data['gt_instances'])
frames = data['imgs'] # list of Tensor.
outputs = {
'pred_logits': [],
'pred_boxes': [],
}
track_instances = None
keys = list(self._generate_empty_tracks()._fields.keys())
for frame_index, (frame, gt, proposals) in enumerate(zip(frames, data['gt_instances'], data['proposals'])):
frame.requires_grad = False
is_last = frame_index == len(frames) - 1
if self.query_denoise > 0:
l_1 = l_2 = self.query_denoise
gtboxes = gt.boxes.clone()
_rs = torch.rand_like(gtboxes) * 2 - 1
gtboxes[..., :2] += gtboxes[..., 2:] * _rs[..., :2] * l_1
gtboxes[..., 2:] *= 1 + l_2 * _rs[..., 2:]
else:
gtboxes = None
if track_instances is None:
track_instances = self._generate_empty_tracks(proposals)
else:
track_instances = Instances.cat([
self._generate_empty_tracks(proposals),
track_instances])
if self.use_checkpoint and frame_index < len(frames) - 1:
def fn(frame, gtboxes, *args):
frame = nested_tensor_from_tensor_list([frame])
tmp = Instances((1, 1), **dict(zip(keys, args)))
frame_res = self._forward_single_image(frame, tmp, gtboxes)
return (
frame_res['pred_logits'],
frame_res['pred_boxes'],
frame_res['hs'],
*[aux['pred_logits'] for aux in frame_res['aux_outputs']],
*[aux['pred_boxes'] for aux in frame_res['aux_outputs']]
)
args = [frame, gtboxes] + [track_instances.get(k) for k in keys]
params = tuple((p for p in self.parameters() if p.requires_grad))
tmp = checkpoint.CheckpointFunction.apply(fn, len(args), *args, *params)
frame_res = {
'pred_logits': tmp[0],
'pred_boxes': tmp[1],
'hs': tmp[2],
'aux_outputs': [{
'pred_logits': tmp[3+i],
'pred_boxes': tmp[3+5+i],
} for i in range(5)],
}
else:
frame = nested_tensor_from_tensor_list([frame])
frame_res = self._forward_single_image(frame, track_instances, gtboxes)
frame_res = self._post_process_single_image(frame_res, track_instances, is_last)
track_instances = frame_res['track_instances']
outputs['pred_logits'].append(frame_res['pred_logits'])
outputs['pred_boxes'].append(frame_res['pred_boxes'])
if not self.training:
outputs['track_instances'] = track_instances
else:
outputs['losses_dict'] = self.criterion.losses_dict
return outputs
def build(args):
dataset_to_num_classes = {
'coco': 91,
'coco_panoptic': 250,
'e2e_mot': 1,
'e2e_dance': 1,
'e2e_joint': 1,
'e2e_static_mot': 1,
}
assert args.dataset_file in dataset_to_num_classes
num_classes = dataset_to_num_classes[args.dataset_file]
device = torch.device(args.device)
backbone = build_backbone(args)
transformer = build_deforamble_transformer(args)
d_model = transformer.d_model
hidden_dim = args.dim_feedforward
query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2)
img_matcher = build_matcher(args)
num_frames_per_batch = max(args.sampler_lengths)
weight_dict = {}
for i in range(num_frames_per_batch):
weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef,
'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef,
'frame_{}_loss_giou'.format(i): args.giou_loss_coef,
})
# TODO this is a hack
if args.aux_loss:
for i in range(num_frames_per_batch):
for j in range(args.dec_layers - 1):
weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef,
'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef,
'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef,
})
for j in range(args.dec_layers):
weight_dict.update({"frame_{}_ps{}_loss_ce".format(i, j): args.cls_loss_coef,
'frame_{}_ps{}_loss_bbox'.format(i, j): args.bbox_loss_coef,
'frame_{}_ps{}_loss_giou'.format(i, j): args.giou_loss_coef,
})
if args.memory_bank_type is not None and len(args.memory_bank_type) > 0:
memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2)
for i in range(num_frames_per_batch):
weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef})
else:
memory_bank = None
losses = ['labels', 'boxes']
criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses)
criterion.to(device)
postprocessors = {}
model = MOTR(
backbone,
transformer,
track_embed=query_interaction_layer,
num_feature_levels=args.num_feature_levels,
num_classes=num_classes,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
criterion=criterion,
with_box_refine=args.with_box_refine,
two_stage=args.two_stage,
memory_bank=memory_bank,
use_checkpoint=args.use_checkpoint,
query_denoise=args.query_denoise,
)
return model, criterion, postprocessors
|