File size: 4,684 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
dataset_info = dict(
dataset_name='mhp',
paper_info=dict(
author='Zhao, Jian and Li, Jianshu and Cheng, Yu and '
'Sim, Terence and Yan, Shuicheng and Feng, Jiashi',
title='Understanding humans in crowded scenes: '
'Deep nested adversarial learning and a '
'new benchmark for multi-human parsing',
container='Proceedings of the 26th ACM '
'international conference on Multimedia',
year='2018',
homepage='https://lv-mhp.github.io/dataset',
),
keypoint_info={
0:
dict(
name='right_ankle',
id=0,
color=[255, 128, 0],
type='lower',
swap='left_ankle'),
1:
dict(
name='right_knee',
id=1,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
2:
dict(
name='right_hip',
id=2,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
3:
dict(
name='left_hip',
id=3,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
4:
dict(
name='left_knee',
id=4,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
5:
dict(
name='left_ankle',
id=5,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
6:
dict(name='pelvis', id=6, color=[51, 153, 255], type='lower', swap=''),
7:
dict(name='thorax', id=7, color=[51, 153, 255], type='upper', swap=''),
8:
dict(
name='upper_neck',
id=8,
color=[51, 153, 255],
type='upper',
swap=''),
9:
dict(
name='head_top', id=9, color=[51, 153, 255], type='upper',
swap=''),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='right_elbow',
id=11,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
12:
dict(
name='right_shoulder',
id=12,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
13:
dict(
name='left_shoulder',
id=13,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
14:
dict(
name='left_elbow',
id=14,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
15:
dict(
name='left_wrist',
id=15,
color=[0, 255, 0],
type='upper',
swap='right_wrist')
},
skeleton_info={
0:
dict(link=('right_ankle', 'right_knee'), id=0, color=[255, 128, 0]),
1:
dict(link=('right_knee', 'right_hip'), id=1, color=[255, 128, 0]),
2:
dict(link=('right_hip', 'pelvis'), id=2, color=[255, 128, 0]),
3:
dict(link=('pelvis', 'left_hip'), id=3, color=[0, 255, 0]),
4:
dict(link=('left_hip', 'left_knee'), id=4, color=[0, 255, 0]),
5:
dict(link=('left_knee', 'left_ankle'), id=5, color=[0, 255, 0]),
6:
dict(link=('pelvis', 'thorax'), id=6, color=[51, 153, 255]),
7:
dict(link=('thorax', 'upper_neck'), id=7, color=[51, 153, 255]),
8:
dict(link=('upper_neck', 'head_top'), id=8, color=[51, 153, 255]),
9:
dict(link=('upper_neck', 'right_shoulder'), id=9, color=[255, 128, 0]),
10:
dict(
link=('right_shoulder', 'right_elbow'), id=10, color=[255, 128,
0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('upper_neck', 'left_shoulder'), id=12, color=[0, 255, 0]),
13:
dict(link=('left_shoulder', 'left_elbow'), id=13, color=[0, 255, 0]),
14:
dict(link=('left_elbow', 'left_wrist'), id=14, color=[0, 255, 0])
},
joint_weights=[
1.5, 1.2, 1., 1., 1.2, 1.5, 1., 1., 1., 1., 1.5, 1.2, 1., 1., 1.2, 1.5
],
# Adapted from COCO dataset.
sigmas=[
0.089, 0.083, 0.107, 0.107, 0.083, 0.089, 0.026, 0.026, 0.026, 0.026,
0.062, 0.072, 0.179, 0.179, 0.072, 0.062
])
|