File size: 73,911 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
# coding=utf-8
# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CANINE model."""


import copy
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import (
    BaseModelOutput,
    ModelOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_canine import CanineConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "google/canine-s"
_CONFIG_FOR_DOC = "CanineConfig"

CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/canine-s",
    "google/canine-r"
    # See all CANINE models at https://huggingface.co/models?filter=canine
]

# Support up to 16 hash functions.
_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223]


@dataclass
class CanineModelOutputWithPooling(ModelOutput):
    """
    Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
    different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
    Transformer encoders.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
            shallow Transformer encoder).
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            Hidden-state of the first token of the sequence (classification token) at the last layer of the deep
            Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer
            weights are trained from the next sentence prediction (classification) objective during pretraining.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each
            encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length //
            config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the
            initial input to each Transformer encoder. The hidden states of the shallow encoders have length
            `sequence_length`, but the hidden states of the deep encoder have length `sequence_length` //
            `config.downsampling_rate`.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size,
            num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length //
            config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the
            attention softmax, used to compute the weighted average in the self-attention heads.
    """

    last_hidden_state: torch.FloatTensor = None
    pooler_output: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


def load_tf_weights_in_canine(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        # also discard the cls weights (which were used for the next sentence prediction pre-training task)
        if any(
            n
            in [
                "adam_v",
                "adam_m",
                "AdamWeightDecayOptimizer",
                "AdamWeightDecayOptimizer_1",
                "global_step",
                "cls",
                "autoregressive_decoder",
                "char_output_weights",
            ]
            for n in name
        ):
            logger.info(f"Skipping {'/'.join(name)}")
            continue
        # if first scope name starts with "bert", change it to "encoder"
        if name[0] == "bert":
            name[0] = "encoder"
        # remove "embeddings" middle name of HashBucketCodepointEmbedders
        elif name[1] == "embeddings":
            name.remove(name[1])
        # rename segment_embeddings to token_type_embeddings
        elif name[1] == "segment_embeddings":
            name[1] = "token_type_embeddings"
        # rename initial convolutional projection layer
        elif name[1] == "initial_char_encoder":
            name = ["chars_to_molecules"] + name[-2:]
        # rename final convolutional projection layer
        elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]:
            name = ["projection"] + name[1:]
        pointer = model
        for m_name in name:
            if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name:
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info(f"Skipping {'/'.join(name)}")
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]:
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)

        if pointer.shape != array.shape:
            raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")

        logger.info(f"Initialize PyTorch weight {name}")
        pointer.data = torch.from_numpy(array)
    return model


class CanineEmbeddings(nn.Module):
    """Construct the character, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()

        self.config = config

        # character embeddings
        shard_embedding_size = config.hidden_size // config.num_hash_functions
        for i in range(config.num_hash_functions):
            name = f"HashBucketCodepointEmbedder_{i}"
            setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size))
        self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")

    def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int):
        """
        Converts ids to hash bucket ids via multiple hashing.

        Args:
            input_ids: The codepoints or other IDs to be hashed.
            num_hashes: The number of hash functions to use.
            num_buckets: The number of hash buckets (i.e. embeddings in each table).

        Returns:
            A list of tensors, each of which is the hash bucket IDs from one hash function.
        """
        if num_hashes > len(_PRIMES):
            raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}")

        primes = _PRIMES[:num_hashes]

        result_tensors = []
        for prime in primes:
            hashed = ((input_ids + 1) * prime) % num_buckets
            result_tensors.append(hashed)
        return result_tensors

    def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int):
        """Converts IDs (e.g. codepoints) into embeddings via multiple hashing."""
        if embedding_size % num_hashes != 0:
            raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0")

        hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets)
        embedding_shards = []
        for i, hash_bucket_ids in enumerate(hash_bucket_tensors):
            name = f"HashBucketCodepointEmbedder_{i}"
            shard_embeddings = getattr(self, name)(hash_bucket_ids)
            embedding_shards.append(shard_embeddings)

        return torch.cat(embedding_shards, dim=-1)

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self._embed_hash_buckets(
                input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets
            )

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings

        if self.position_embedding_type == "absolute":
            position_embeddings = self.char_position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class CharactersToMolecules(nn.Module):
    """Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions."""

    def __init__(self, config):
        super().__init__()

        self.conv = nn.Conv1d(
            in_channels=config.hidden_size,
            out_channels=config.hidden_size,
            kernel_size=config.downsampling_rate,
            stride=config.downsampling_rate,
        )
        self.activation = ACT2FN[config.hidden_act]

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, char_encoding: torch.Tensor) -> torch.Tensor:
        # `cls_encoding`: [batch, 1, hidden_size]
        cls_encoding = char_encoding[:, 0:1, :]

        # char_encoding has shape [batch, char_seq, hidden_size]
        # We transpose it to be [batch, hidden_size, char_seq]
        char_encoding = torch.transpose(char_encoding, 1, 2)
        downsampled = self.conv(char_encoding)
        downsampled = torch.transpose(downsampled, 1, 2)
        downsampled = self.activation(downsampled)

        # Truncate the last molecule in order to reserve a position for [CLS].
        # Often, the last position is never used (unless we completely fill the
        # text buffer). This is important in order to maintain alignment on TPUs
        # (i.e. a multiple of 128).
        downsampled_truncated = downsampled[:, 0:-1, :]

        # We also keep [CLS] as a separate sequence position since we always
        # want to reserve a position (and the model capacity that goes along
        # with that) in the deep BERT stack.
        # `result`: [batch, molecule_seq, molecule_dim]
        result = torch.cat([cls_encoding, downsampled_truncated], dim=1)

        result = self.LayerNorm(result)

        return result


class ConvProjection(nn.Module):
    """
    Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size
    characters.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.conv = nn.Conv1d(
            in_channels=config.hidden_size * 2,
            out_channels=config.hidden_size,
            kernel_size=config.upsampling_kernel_size,
            stride=1,
        )
        self.activation = ACT2FN[config.hidden_act]
        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self,
        inputs: torch.Tensor,
        final_seq_char_positions: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        # inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final]
        # we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq]
        inputs = torch.transpose(inputs, 1, 2)

        # PyTorch < 1.9 does not support padding="same" (which is used in the original implementation),
        # so we pad the tensor manually before passing it to the conv layer
        # based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38
        pad_total = self.config.upsampling_kernel_size - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg

        pad = nn.ConstantPad1d((pad_beg, pad_end), 0)
        # `result`: shape (batch_size, char_seq_len, hidden_size)
        result = self.conv(pad(inputs))
        result = torch.transpose(result, 1, 2)
        result = self.activation(result)
        result = self.LayerNorm(result)
        result = self.dropout(result)
        final_char_seq = result

        if final_seq_char_positions is not None:
            # Limit transformer query seq and attention mask to these character
            # positions to greatly reduce the compute cost. Typically, this is just
            # done for the MLM training task.
            # TODO add support for MLM
            raise NotImplementedError("CanineForMaskedLM is currently not supported")
        else:
            query_seq = final_char_seq

        return query_seq


class CanineSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        from_tensor: torch.Tensor,
        to_tensor: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        mixed_query_layer = self.query(from_tensor)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.

        key_layer = self.transpose_for_scores(self.key(to_tensor))
        value_layer = self.transpose_for_scores(self.value(to_tensor))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = from_tensor.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            if attention_mask.ndim == 3:
                # if attention_mask is 3D, do the following:
                attention_mask = torch.unsqueeze(attention_mask, dim=1)
                # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
                # masked positions, this operation will create a tensor which is 0.0 for
                # positions we want to attend and the dtype's smallest value for masked positions.
                attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min
            # Apply the attention mask (precomputed for all layers in CanineModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class CanineSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class CanineAttention(nn.Module):
    """
    Additional arguments related to local attention:

        - **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
        - **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
          attend
        to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
        *optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
        positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
        width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
        128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
        **attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
        *to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
        skip when moving to the next block in `to_tensor`.
    """

    def __init__(
        self,
        config,
        local=False,
        always_attend_to_first_position: bool = False,
        first_position_attends_to_all: bool = False,
        attend_from_chunk_width: int = 128,
        attend_from_chunk_stride: int = 128,
        attend_to_chunk_width: int = 128,
        attend_to_chunk_stride: int = 128,
    ):
        super().__init__()
        self.self = CanineSelfAttention(config)
        self.output = CanineSelfOutput(config)
        self.pruned_heads = set()

        # additional arguments related to local attention
        self.local = local
        if attend_from_chunk_width < attend_from_chunk_stride:
            raise ValueError(
                "`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped."
            )
        if attend_to_chunk_width < attend_to_chunk_stride:
            raise ValueError(
                "`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped."
            )
        self.always_attend_to_first_position = always_attend_to_first_position
        self.first_position_attends_to_all = first_position_attends_to_all
        self.attend_from_chunk_width = attend_from_chunk_width
        self.attend_from_chunk_stride = attend_from_chunk_stride
        self.attend_to_chunk_width = attend_to_chunk_width
        self.attend_to_chunk_stride = attend_to_chunk_stride

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: Tuple[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
        if not self.local:
            self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions)
            attention_output = self_outputs[0]
        else:
            from_seq_length = to_seq_length = hidden_states.shape[1]
            from_tensor = to_tensor = hidden_states

            # Create chunks (windows) that we will attend *from* and then concatenate them.
            from_chunks = []
            if self.first_position_attends_to_all:
                from_chunks.append((0, 1))
                # We must skip this first position so that our output sequence is the
                # correct length (this matters in the *from* sequence only).
                from_start = 1
            else:
                from_start = 0
            for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride):
                chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width)
                from_chunks.append((chunk_start, chunk_end))

            # Determine the chunks (windows) that will will attend *to*.
            to_chunks = []
            if self.first_position_attends_to_all:
                to_chunks.append((0, to_seq_length))
            for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride):
                chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width)
                to_chunks.append((chunk_start, chunk_end))

            if len(from_chunks) != len(to_chunks):
                raise ValueError(
                    f"Expected to have same number of `from_chunks` ({from_chunks}) and "
                    f"`to_chunks` ({from_chunks}). Check strides."
                )

            # next, compute attention scores for each pair of windows and concatenate
            attention_output_chunks = []
            attention_probs_chunks = []
            for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks):
                from_tensor_chunk = from_tensor[:, from_start:from_end, :]
                to_tensor_chunk = to_tensor[:, to_start:to_end, :]
                # `attention_mask`: <float>[batch_size, from_seq, to_seq]
                # `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk]
                attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end]
                if self.always_attend_to_first_position:
                    cls_attention_mask = attention_mask[:, from_start:from_end, 0:1]
                    attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2)

                    cls_position = to_tensor[:, 0:1, :]
                    to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1)

                attention_outputs_chunk = self.self(
                    from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions
                )
                attention_output_chunks.append(attention_outputs_chunk[0])
                if output_attentions:
                    attention_probs_chunks.append(attention_outputs_chunk[1])

            attention_output = torch.cat(attention_output_chunks, dim=1)

        attention_output = self.output(attention_output, hidden_states)
        outputs = (attention_output,)
        if not self.local:
            outputs = outputs + self_outputs[1:]  # add attentions if we output them
        else:
            outputs = outputs + tuple(attention_probs_chunks)  # add attentions if we output them
        return outputs


class CanineIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class CanineOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class CanineLayer(nn.Module):
    def __init__(
        self,
        config,
        local,
        always_attend_to_first_position,
        first_position_attends_to_all,
        attend_from_chunk_width,
        attend_from_chunk_stride,
        attend_to_chunk_width,
        attend_to_chunk_stride,
    ):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = CanineAttention(
            config,
            local,
            always_attend_to_first_position,
            first_position_attends_to_all,
            attend_from_chunk_width,
            attend_from_chunk_stride,
            attend_to_chunk_width,
            attend_to_chunk_stride,
        )
        self.intermediate = CanineIntermediate(config)
        self.output = CanineOutput(config)

    def forward(
        self,
        hidden_states: Tuple[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]

        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class CanineEncoder(nn.Module):
    def __init__(
        self,
        config,
        local=False,
        always_attend_to_first_position=False,
        first_position_attends_to_all=False,
        attend_from_chunk_width=128,
        attend_from_chunk_stride=128,
        attend_to_chunk_width=128,
        attend_to_chunk_stride=128,
    ):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [
                CanineLayer(
                    config,
                    local,
                    always_attend_to_first_position,
                    first_position_attends_to_all,
                    attend_from_chunk_width,
                    attend_from_chunk_stride,
                    attend_to_chunk_width,
                    attend_to_chunk_stride,
                )
                for _ in range(config.num_hidden_layers)
            ]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: Tuple[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                )
            else:
                layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class CaninePooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class CaninePredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class CanineLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = CaninePredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class CanineOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = CanineLMPredictionHead(config)

    def forward(
        self,
        sequence_output: Tuple[torch.Tensor],
    ) -> Tuple[torch.Tensor]:
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class CaninePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CanineConfig
    load_tf_weights = load_tf_weights_in_canine
    base_model_prefix = "canine"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, CanineEncoder):
            module.gradient_checkpointing = value


CANINE_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`CanineConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CANINE_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare CANINE Model transformer outputting raw hidden-states without any specific head on top.",
    CANINE_START_DOCSTRING,
)
class CanineModel(CaninePreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config
        shallow_config = copy.deepcopy(config)
        shallow_config.num_hidden_layers = 1

        self.char_embeddings = CanineEmbeddings(config)
        # shallow/low-dim transformer encoder to get a initial character encoding
        self.initial_char_encoder = CanineEncoder(
            shallow_config,
            local=True,
            always_attend_to_first_position=False,
            first_position_attends_to_all=False,
            attend_from_chunk_width=config.local_transformer_stride,
            attend_from_chunk_stride=config.local_transformer_stride,
            attend_to_chunk_width=config.local_transformer_stride,
            attend_to_chunk_stride=config.local_transformer_stride,
        )
        self.chars_to_molecules = CharactersToMolecules(config)
        # deep transformer encoder
        self.encoder = CanineEncoder(config)
        self.projection = ConvProjection(config)
        # shallow/low-dim transformer encoder to get a final character encoding
        self.final_char_encoder = CanineEncoder(shallow_config)

        self.pooler = CaninePooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask):
        """
        Create 3D attention mask from a 2D tensor mask.

        Args:
            from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
            to_mask: int32 Tensor of shape [batch_size, to_seq_length].

        Returns:
            float Tensor of shape [batch_size, from_seq_length, to_seq_length].
        """
        batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1]

        to_seq_length = to_mask.shape[1]

        to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float()

        # We don't assume that `from_tensor` is a mask (although it could be). We
        # don't actually care if we attend *from* padding tokens (only *to* padding)
        # tokens so we create a tensor of all ones.
        broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device)

        # Here we broadcast along two dimensions to create the mask.
        mask = broadcast_ones * to_mask

        return mask

    def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int):
        """Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer."""

        # first, make char_attention_mask 3D by adding a channel dim
        batch_size, char_seq_len = char_attention_mask.shape
        poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len))

        # next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len)
        pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)(
            poolable_char_mask.float()
        )

        # finally, squeeze to get tensor of shape (batch_size, mol_seq_len)
        molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1)

        return molecule_attention_mask

    def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor:
        """Repeats molecules to make them the same length as the char sequence."""

        rate = self.config.downsampling_rate

        molecules_without_extra_cls = molecules[:, 1:, :]
        # `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size]
        repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2)

        # So far, we've repeated the elements sufficient for any `char_seq_length`
        # that's a multiple of `downsampling_rate`. Now we account for the last
        # n elements (n < `downsampling_rate`), i.e. the remainder of floor
        # division. We do this by repeating the last molecule a few extra times.
        last_molecule = molecules[:, -1:, :]
        remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item()
        remainder_repeated = torch.repeat_interleave(
            last_molecule,
            # +1 molecule to compensate for truncation.
            repeats=remainder_length + rate,
            dim=-2,
        )

        # `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
        return torch.cat([repeated, remainder_repeated], dim=-2)

    @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CanineModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CanineModelOutputWithPooling]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length)), device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
        molecule_attention_mask = self._downsample_attention_mask(
            attention_mask, downsampling_rate=self.config.downsampling_rate
        )
        extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1])
        )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # `input_char_embeddings`: shape (batch_size, char_seq, char_dim)
        input_char_embeddings = self.char_embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        # Contextualize character embeddings using shallow Transformer.
        # We use a 3D attention mask for the local attention.
        # `input_char_encoding`: shape (batch_size, char_seq_len, char_dim)
        char_attention_mask = self._create_3d_attention_mask_from_input_mask(
            input_ids if input_ids is not None else inputs_embeds, attention_mask
        )
        init_chars_encoder_outputs = self.initial_char_encoder(
            input_char_embeddings,
            attention_mask=char_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        input_char_encoding = init_chars_encoder_outputs.last_hidden_state

        # Downsample chars to molecules.
        # The following lines have dimensions: [batch, molecule_seq, molecule_dim].
        # In this transformation, we change the dimensionality from `char_dim` to
        # `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on
        # the resnet connections (a) from the final char transformer stack back into
        # the original char transformer stack and (b) the resnet connections from
        # the final char transformer stack back into the deep BERT stack of
        # molecules.
        #
        # Empirically, it is critical to use a powerful enough transformation here:
        # mean pooling causes training to diverge with huge gradient norms in this
        # region of the model; using a convolution here resolves this issue. From
        # this, it seems that molecules and characters require a very different
        # feature space; intuitively, this makes sense.
        init_molecule_encoding = self.chars_to_molecules(input_char_encoding)

        # Deep BERT encoder
        # `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim)
        encoder_outputs = self.encoder(
            init_molecule_encoding,
            attention_mask=extended_molecule_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        molecule_sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None

        # Upsample molecules back to characters.
        # `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size)
        repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1])

        # Concatenate representations (contextualized char embeddings and repeated molecules):
        # `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final]
        concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1)

        # Project representation dimension back to hidden_size
        # `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
        sequence_output = self.projection(concat)

        # Apply final shallow Transformer
        # `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
        final_chars_encoder_outputs = self.final_char_encoder(
            sequence_output,
            attention_mask=extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        sequence_output = final_chars_encoder_outputs.last_hidden_state

        if output_hidden_states:
            deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1]
            all_hidden_states = (
                all_hidden_states
                + init_chars_encoder_outputs.hidden_states
                + deep_encoder_hidden_states
                + final_chars_encoder_outputs.hidden_states
            )

        if output_attentions:
            deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1]
            all_self_attentions = (
                all_self_attentions
                + init_chars_encoder_outputs.attentions
                + deep_encoder_self_attentions
                + final_chars_encoder_outputs.attentions
            )

        if not return_dict:
            output = (sequence_output, pooled_output)
            output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None)
            return output

        return CanineModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    """
    CANINE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
    output) e.g. for GLUE tasks.
    """,
    CANINE_START_DOCSTRING,
)
class CanineForSequenceClassification(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    CANINE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
    CANINE_START_DOCSTRING,
)
class CanineForMultipleChoice(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MultipleChoiceModelOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    CANINE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    CANINE_START_DOCSTRING,
)
class CanineForTokenClassification(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TokenClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, CanineForTokenClassification
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
        >>> model = CanineForTokenClassification.from_pretrained("google/canine-s")

        >>> inputs = tokenizer(
        ...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
        ... )

        >>> with torch.no_grad():
        ...     logits = model(**inputs).logits

        >>> predicted_token_class_ids = logits.argmax(-1)

        >>> # Note that tokens are classified rather then input words which means that
        >>> # there might be more predicted token classes than words.
        >>> # Multiple token classes might account for the same word
        >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
        >>> predicted_tokens_classes  # doctest: +SKIP
        ```

        ```python
        >>> labels = predicted_token_class_ids
        >>> loss = model(**inputs, labels=labels).loss
        >>> round(loss.item(), 2)  # doctest: +SKIP
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    CANINE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    CANINE_START_DOCSTRING,
)
class CanineForQuestionAnswering(CaninePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.canine = CanineModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint="Splend1dchan/canine-c-squad",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output="'nice puppet'",
        expected_loss=8.81,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.canine(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )