File size: 35,343 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import os
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import requests
import yaml
from huggingface_hub import model_info
from huggingface_hub.utils import HFValidationError

from . import __version__
from .models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_CTC_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
)
from .training_args import ParallelMode
from .utils import (
    MODEL_CARD_NAME,
    cached_file,
    is_datasets_available,
    is_offline_mode,
    is_tf_available,
    is_tokenizers_available,
    is_torch_available,
    logging,
)


TASK_MAPPING = {
    "text-generation": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    "image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    "image-segmentation": MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES,
    "fill-mask": MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    "object-detection": MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    "question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    "text2text-generation": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "text-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    "table-question-answering": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    "token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    "audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    "automatic-speech-recognition": {**MODEL_FOR_CTC_MAPPING_NAMES, **MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES},
    "zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
}

logger = logging.get_logger(__name__)


class ModelCard:
    r"""
    Structured Model Card class. Store model card as well as methods for loading/downloading/saving model cards.

    Please read the following paper for details and explanation on the sections: "Model Cards for Model Reporting" by
    Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
    Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993

    Note: A model card can be loaded and saved to disk.
    """

    def __init__(self, **kwargs):
        warnings.warn(
            "The class `ModelCard` is deprecated and will be removed in version 5 of Transformers", FutureWarning
        )
        # Recommended attributes from https://arxiv.org/abs/1810.03993 (see papers)
        self.model_details = kwargs.pop("model_details", {})
        self.intended_use = kwargs.pop("intended_use", {})
        self.factors = kwargs.pop("factors", {})
        self.metrics = kwargs.pop("metrics", {})
        self.evaluation_data = kwargs.pop("evaluation_data", {})
        self.training_data = kwargs.pop("training_data", {})
        self.quantitative_analyses = kwargs.pop("quantitative_analyses", {})
        self.ethical_considerations = kwargs.pop("ethical_considerations", {})
        self.caveats_and_recommendations = kwargs.pop("caveats_and_recommendations", {})

        # Open additional attributes
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err

    def save_pretrained(self, save_directory_or_file):
        """Save a model card object to the directory or file `save_directory_or_file`."""
        if os.path.isdir(save_directory_or_file):
            # If we save using the predefined names, we can load using `from_pretrained`
            output_model_card_file = os.path.join(save_directory_or_file, MODEL_CARD_NAME)
        else:
            output_model_card_file = save_directory_or_file

        self.to_json_file(output_model_card_file)
        logger.info(f"Model card saved in {output_model_card_file}")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate a [`ModelCard`] from a pre-trained model model card.

        Parameters:
            pretrained_model_name_or_path: either:

                - a string, the *model id* of a pretrained model card hosted inside a model repo on huggingface.co.
                  Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                  user or organization name, like `dbmdz/bert-base-german-cased`.
                - a path to a *directory* containing a model card file saved using the [`~ModelCard.save_pretrained`]
                  method, e.g.: `./my_model_directory/`.
                - a path or url to a saved model card JSON *file*, e.g.: `./my_model_directory/modelcard.json`.

            cache_dir: (*optional*) string:
                Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache
                should not be used.

            kwargs: (*optional*) dict: key/value pairs with which to update the ModelCard object after loading.

                - The values in kwargs of any keys which are model card attributes will be used to override the loaded
                  values.
                - Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the
                  *return_unused_kwargs* keyword parameter.

            proxies: (*optional*) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

            return_unused_kwargs: (*optional*) bool:

                - If False, then this function returns just the final model card object.
                - If True, then this functions returns a tuple *(model card, unused_kwargs)* where *unused_kwargs* is a
                  dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of
                  kwargs which has not been used to update *ModelCard* and is otherwise ignored.

        Examples:

        ```python
        # Download model card from huggingface.co and cache.
        modelcard = ModelCard.from_pretrained("bert-base-uncased")
        # Model card was saved using *save_pretrained('./test/saved_model/')*
        modelcard = ModelCard.from_pretrained("./test/saved_model/")
        modelcard = ModelCard.from_pretrained("./test/saved_model/modelcard.json")
        modelcard = ModelCard.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
        ```"""
        cache_dir = kwargs.pop("cache_dir", None)
        proxies = kwargs.pop("proxies", None)
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
        from_pipeline = kwargs.pop("_from_pipeline", None)

        user_agent = {"file_type": "model_card"}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        is_local = os.path.isdir(pretrained_model_name_or_path)
        if os.path.isfile(pretrained_model_name_or_path):
            resolved_model_card_file = pretrained_model_name_or_path
            is_local = True
        else:
            try:
                # Load from URL or cache if already cached
                resolved_model_card_file = cached_file(
                    pretrained_model_name_or_path,
                    filename=MODEL_CARD_NAME,
                    cache_dir=cache_dir,
                    proxies=proxies,
                    user_agent=user_agent,
                )
                if is_local:
                    logger.info(f"loading model card file {resolved_model_card_file}")
                else:
                    logger.info(f"loading model card file {MODEL_CARD_NAME} from cache at {resolved_model_card_file}")
                # Load model card
                modelcard = cls.from_json_file(resolved_model_card_file)

            except (EnvironmentError, json.JSONDecodeError):
                # We fall back on creating an empty model card
                modelcard = cls()

        # Update model card with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(modelcard, key):
                setattr(modelcard, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info(f"Model card: {modelcard}")
        if return_unused_kwargs:
            return modelcard, kwargs
        else:
            return modelcard

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `ModelCard` from a Python dictionary of parameters."""
        return cls(**json_object)

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `ModelCard` from a json file of parameters."""
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        dict_obj = json.loads(text)
        return cls(**dict_obj)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """Save this instance to a json file."""
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string())


AUTOGENERATED_TRAINER_COMMENT = """
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
"""

AUTOGENERATED_KERAS_COMMENT = """
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
"""


TASK_TAG_TO_NAME_MAPPING = {
    "fill-mask": "Masked Language Modeling",
    "image-classification": "Image Classification",
    "image-segmentation": "Image Segmentation",
    "multiple-choice": "Multiple Choice",
    "object-detection": "Object Detection",
    "question-answering": "Question Answering",
    "summarization": "Summarization",
    "table-question-answering": "Table Question Answering",
    "text-classification": "Text Classification",
    "text-generation": "Causal Language Modeling",
    "text2text-generation": "Sequence-to-sequence Language Modeling",
    "token-classification": "Token Classification",
    "translation": "Translation",
    "zero-shot-classification": "Zero Shot Classification",
    "automatic-speech-recognition": "Automatic Speech Recognition",
    "audio-classification": "Audio Classification",
}


METRIC_TAGS = [
    "accuracy",
    "bleu",
    "f1",
    "matthews_correlation",
    "pearsonr",
    "precision",
    "recall",
    "rouge",
    "sacrebleu",
    "spearmanr",
    "wer",
]


def _listify(obj):
    if obj is None:
        return []
    elif isinstance(obj, str):
        return [obj]
    else:
        return obj


def _insert_values_as_list(metadata, name, values):
    if values is None:
        return metadata
    if isinstance(values, str):
        values = [values]
    values = [v for v in values if v is not None]
    if len(values) == 0:
        return metadata
    metadata[name] = values
    return metadata


def infer_metric_tags_from_eval_results(eval_results):
    if eval_results is None:
        return {}
    result = {}
    for key in eval_results.keys():
        if key.lower().replace(" ", "_") in METRIC_TAGS:
            result[key.lower().replace(" ", "_")] = key
        elif key.lower() == "rouge1":
            result["rouge"] = key
    return result


def _insert_value(metadata, name, value):
    if value is None:
        return metadata
    metadata[name] = value
    return metadata


def is_hf_dataset(dataset):
    if not is_datasets_available():
        return False

    from datasets import Dataset, IterableDataset

    return isinstance(dataset, (Dataset, IterableDataset))


def _get_mapping_values(mapping):
    result = []
    for v in mapping.values():
        if isinstance(v, (tuple, list)):
            result += list(v)
        else:
            result.append(v)
    return result


@dataclass
class TrainingSummary:
    model_name: str
    language: Optional[Union[str, List[str]]] = None
    license: Optional[str] = None
    tags: Optional[Union[str, List[str]]] = None
    finetuned_from: Optional[str] = None
    tasks: Optional[Union[str, List[str]]] = None
    dataset: Optional[Union[str, List[str]]] = None
    dataset_tags: Optional[Union[str, List[str]]] = None
    dataset_args: Optional[Union[str, List[str]]] = None
    dataset_metadata: Optional[Dict[str, Any]] = None
    eval_results: Optional[Dict[str, float]] = None
    eval_lines: Optional[List[str]] = None
    hyperparameters: Optional[Dict[str, Any]] = None
    source: Optional[str] = "trainer"

    def __post_init__(self):
        # Infer default license from the checkpoint used, if possible.
        if (
            self.license is None
            and not is_offline_mode()
            and self.finetuned_from is not None
            and len(self.finetuned_from) > 0
        ):
            try:
                info = model_info(self.finetuned_from)
                for tag in info.tags:
                    if tag.startswith("license:"):
                        self.license = tag[8:]
            except (requests.exceptions.HTTPError, requests.exceptions.ConnectionError, HFValidationError):
                pass

    def create_model_index(self, metric_mapping):
        model_index = {"name": self.model_name}

        # Dataset mapping tag -> name
        dataset_names = _listify(self.dataset)
        dataset_tags = _listify(self.dataset_tags)
        dataset_args = _listify(self.dataset_args)
        dataset_metadata = _listify(self.dataset_metadata)
        if len(dataset_args) < len(dataset_tags):
            dataset_args = dataset_args + [None] * (len(dataset_tags) - len(dataset_args))
        dataset_mapping = dict(zip(dataset_tags, dataset_names))
        dataset_arg_mapping = dict(zip(dataset_tags, dataset_args))
        dataset_metadata_mapping = dict(zip(dataset_tags, dataset_metadata))

        task_mapping = {
            task: TASK_TAG_TO_NAME_MAPPING[task] for task in _listify(self.tasks) if task in TASK_TAG_TO_NAME_MAPPING
        }

        model_index["results"] = []

        if len(task_mapping) == 0 and len(dataset_mapping) == 0:
            return [model_index]
        if len(task_mapping) == 0:
            task_mapping = {None: None}
        if len(dataset_mapping) == 0:
            dataset_mapping = {None: None}

        # One entry per dataset and per task
        all_possibilities = [(task_tag, ds_tag) for task_tag in task_mapping for ds_tag in dataset_mapping]
        for task_tag, ds_tag in all_possibilities:
            result = {}
            if task_tag is not None:
                result["task"] = {"name": task_mapping[task_tag], "type": task_tag}

            if ds_tag is not None:
                metadata = dataset_metadata_mapping.get(ds_tag, {})
                result["dataset"] = {
                    "name": dataset_mapping[ds_tag],
                    "type": ds_tag,
                    **metadata,
                }
                if dataset_arg_mapping[ds_tag] is not None:
                    result["dataset"]["args"] = dataset_arg_mapping[ds_tag]

            if len(metric_mapping) > 0:
                result["metrics"] = []
                for metric_tag, metric_name in metric_mapping.items():
                    result["metrics"].append(
                        {
                            "name": metric_name,
                            "type": metric_tag,
                            "value": self.eval_results[metric_name],
                        }
                    )

            # Remove partial results to avoid the model card being rejected.
            if "task" in result and "dataset" in result and "metrics" in result:
                model_index["results"].append(result)
            else:
                logger.info(f"Dropping the following result as it does not have all the necessary fields:\n{result}")

        return [model_index]

    def create_metadata(self):
        metric_mapping = infer_metric_tags_from_eval_results(self.eval_results)

        metadata = {}
        metadata = _insert_values_as_list(metadata, "language", self.language)
        metadata = _insert_value(metadata, "license", self.license)
        if self.finetuned_from is not None and isinstance(self.finetuned_from, str) and len(self.finetuned_from) > 0:
            metadata = _insert_value(metadata, "base_model", self.finetuned_from)
        metadata = _insert_values_as_list(metadata, "tags", self.tags)
        metadata = _insert_values_as_list(metadata, "datasets", self.dataset_tags)
        metadata = _insert_values_as_list(metadata, "metrics", list(metric_mapping.keys()))
        metadata["model-index"] = self.create_model_index(metric_mapping)

        return metadata

    def to_model_card(self):
        model_card = ""

        metadata = yaml.dump(self.create_metadata(), sort_keys=False)
        if len(metadata) > 0:
            model_card = f"---\n{metadata}---\n"

        # Now the model card for realsies.
        if self.source == "trainer":
            model_card += AUTOGENERATED_TRAINER_COMMENT
        else:
            model_card += AUTOGENERATED_KERAS_COMMENT

        model_card += f"\n# {self.model_name}\n\n"

        if self.finetuned_from is None:
            model_card += "This model was trained from scratch on "
        else:
            model_card += (
                "This model is a fine-tuned version of"
                f" [{self.finetuned_from}](https://huggingface.co/{self.finetuned_from}) on "
            )

        if self.dataset is None:
            model_card += "an unknown dataset."
        else:
            if isinstance(self.dataset, str):
                model_card += f"the {self.dataset} dataset."
            elif isinstance(self.dataset, (tuple, list)) and len(self.dataset) == 1:
                model_card += f"the {self.dataset[0]} dataset."
            else:
                model_card += (
                    ", ".join([f"the {ds}" for ds in self.dataset[:-1]]) + f" and the {self.dataset[-1]} datasets."
                )

        if self.eval_results is not None:
            model_card += "\nIt achieves the following results on the evaluation set:\n"
            model_card += "\n".join([f"- {name}: {_maybe_round(value)}" for name, value in self.eval_results.items()])
        model_card += "\n"

        model_card += "\n## Model description\n\nMore information needed\n"
        model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
        model_card += "\n## Training and evaluation data\n\nMore information needed\n"

        model_card += "\n## Training procedure\n"
        model_card += "\n### Training hyperparameters\n"
        if self.hyperparameters is not None:
            model_card += "\nThe following hyperparameters were used during training:\n"
            model_card += "\n".join([f"- {name}: {value}" for name, value in self.hyperparameters.items()])
            model_card += "\n"
        else:
            model_card += "\nMore information needed\n"

        if self.eval_lines is not None:
            model_card += "\n### Training results\n\n"
            model_card += make_markdown_table(self.eval_lines)
            model_card += "\n"

        model_card += "\n### Framework versions\n\n"
        model_card += f"- Transformers {__version__}\n"

        if self.source == "trainer" and is_torch_available():
            import torch

            model_card += f"- Pytorch {torch.__version__}\n"
        elif self.source == "keras" and is_tf_available():
            import tensorflow as tf

            model_card += f"- TensorFlow {tf.__version__}\n"
        if is_datasets_available():
            import datasets

            model_card += f"- Datasets {datasets.__version__}\n"
        if is_tokenizers_available():
            import tokenizers

            model_card += f"- Tokenizers {tokenizers.__version__}\n"

        return model_card

    @classmethod
    def from_trainer(
        cls,
        trainer,
        language=None,
        license=None,
        tags=None,
        model_name=None,
        finetuned_from=None,
        tasks=None,
        dataset_tags=None,
        dataset_metadata=None,
        dataset=None,
        dataset_args=None,
    ):
        # Infer default from dataset
        one_dataset = trainer.eval_dataset if trainer.eval_dataset is not None else trainer.train_dataset
        if is_hf_dataset(one_dataset) and (dataset_tags is None or dataset_args is None or dataset_metadata is None):
            default_tag = one_dataset.builder_name
            # Those are not real datasets from the Hub so we exclude them.
            if default_tag not in ["csv", "json", "pandas", "parquet", "text"]:
                if dataset_metadata is None:
                    dataset_metadata = [{"config": one_dataset.config_name, "split": str(one_dataset.split)}]
                if dataset_tags is None:
                    dataset_tags = [default_tag]
                if dataset_args is None:
                    dataset_args = [one_dataset.config_name]

        if dataset is None and dataset_tags is not None:
            dataset = dataset_tags

        # Infer default finetuned_from
        if (
            finetuned_from is None
            and hasattr(trainer.model.config, "_name_or_path")
            and not os.path.isdir(trainer.model.config._name_or_path)
        ):
            finetuned_from = trainer.model.config._name_or_path

        # Infer default task tag:
        if tasks is None:
            model_class_name = trainer.model.__class__.__name__
            for task, mapping in TASK_MAPPING.items():
                if model_class_name in _get_mapping_values(mapping):
                    tasks = task

        if model_name is None:
            model_name = Path(trainer.args.output_dir).name
        if len(model_name) == 0:
            model_name = finetuned_from

        # Add `generated_from_trainer` to the tags
        if tags is None:
            tags = ["generated_from_trainer"]
        elif isinstance(tags, str) and tags != "generated_from_trainer":
            tags = [tags, "generated_from_trainer"]
        elif "generated_from_trainer" not in tags:
            tags.append("generated_from_trainer")

        _, eval_lines, eval_results = parse_log_history(trainer.state.log_history)
        hyperparameters = extract_hyperparameters_from_trainer(trainer)

        return cls(
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
            tasks=tasks,
            dataset=dataset,
            dataset_tags=dataset_tags,
            dataset_args=dataset_args,
            dataset_metadata=dataset_metadata,
            eval_results=eval_results,
            eval_lines=eval_lines,
            hyperparameters=hyperparameters,
        )

    @classmethod
    def from_keras(
        cls,
        model,
        model_name,
        keras_history=None,
        language=None,
        license=None,
        tags=None,
        finetuned_from=None,
        tasks=None,
        dataset_tags=None,
        dataset=None,
        dataset_args=None,
    ):
        # Infer default from dataset
        if dataset is not None:
            if is_hf_dataset(dataset) and (dataset_tags is None or dataset_args is None):
                default_tag = dataset.builder_name
                # Those are not real datasets from the Hub so we exclude them.
                if default_tag not in ["csv", "json", "pandas", "parquet", "text"]:
                    if dataset_tags is None:
                        dataset_tags = [default_tag]
                    if dataset_args is None:
                        dataset_args = [dataset.config_name]

        if dataset is None and dataset_tags is not None:
            dataset = dataset_tags

        # Infer default finetuned_from
        if (
            finetuned_from is None
            and hasattr(model.config, "_name_or_path")
            and not os.path.isdir(model.config._name_or_path)
        ):
            finetuned_from = model.config._name_or_path

        # Infer default task tag:
        if tasks is None:
            model_class_name = model.__class__.__name__
            for task, mapping in TASK_MAPPING.items():
                if model_class_name in _get_mapping_values(mapping):
                    tasks = task

        # Add `generated_from_keras_callback` to the tags
        if tags is None:
            tags = ["generated_from_keras_callback"]
        elif isinstance(tags, str) and tags != "generated_from_keras_callback":
            tags = [tags, "generated_from_keras_callback"]
        elif "generated_from_keras_callback" not in tags:
            tags.append("generated_from_keras_callback")

        if keras_history is not None:
            _, eval_lines, eval_results = parse_keras_history(keras_history)
        else:
            eval_lines = []
            eval_results = {}
        hyperparameters = extract_hyperparameters_from_keras(model)

        return cls(
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
            tasks=tasks,
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
            eval_results=eval_results,
            eval_lines=eval_lines,
            hyperparameters=hyperparameters,
            source="keras",
        )


def parse_keras_history(logs):
    """
    Parse the `logs` of either a `tf.keras.History` object returned by `model.fit()` or an accumulated logs `dict`
    passed to the `PushToHubCallback`. Returns lines and logs compatible with those returned by `parse_log_history`.
    """
    if hasattr(logs, "history"):
        # This looks like a `History` object
        if not hasattr(logs, "epoch"):
            # This history looks empty, return empty results
            return None, [], {}
        logs.history["epoch"] = logs.epoch
        logs = logs.history
    else:
        # Training logs is a list of dicts, let's invert it to a dict of lists to match a History object
        logs = {log_key: [single_dict[log_key] for single_dict in logs] for log_key in logs[0]}

    lines = []
    for i in range(len(logs["epoch"])):
        epoch_dict = {log_key: log_value_list[i] for log_key, log_value_list in logs.items()}
        values = {}
        for k, v in epoch_dict.items():
            if k.startswith("val_"):
                k = "validation_" + k[4:]
            elif k != "epoch":
                k = "train_" + k
            splits = k.split("_")
            name = " ".join([part.capitalize() for part in splits])
            values[name] = v
        lines.append(values)

    eval_results = lines[-1]

    return logs, lines, eval_results


def parse_log_history(log_history):
    """
    Parse the `log_history` of a Trainer to get the intermediate and final evaluation results.
    """
    idx = 0
    while idx < len(log_history) and "train_runtime" not in log_history[idx]:
        idx += 1

    # If there are no training logs
    if idx == len(log_history):
        idx -= 1
        while idx >= 0 and "eval_loss" not in log_history[idx]:
            idx -= 1

        if idx >= 0:
            return None, None, log_history[idx]
        else:
            return None, None, None

    # From now one we can assume we have training logs:
    train_log = log_history[idx]
    lines = []
    training_loss = "No log"
    for i in range(idx):
        if "loss" in log_history[i]:
            training_loss = log_history[i]["loss"]
        if "eval_loss" in log_history[i]:
            metrics = log_history[i].copy()
            _ = metrics.pop("total_flos", None)
            epoch = metrics.pop("epoch", None)
            step = metrics.pop("step", None)
            _ = metrics.pop("eval_runtime", None)
            _ = metrics.pop("eval_samples_per_second", None)
            _ = metrics.pop("eval_steps_per_second", None)
            _ = metrics.pop("eval_jit_compilation_time", None)
            values = {"Training Loss": training_loss, "Epoch": epoch, "Step": step}
            for k, v in metrics.items():
                if k == "eval_loss":
                    values["Validation Loss"] = v
                else:
                    splits = k.split("_")
                    name = " ".join([part.capitalize() for part in splits[1:]])
                    values[name] = v
            lines.append(values)

    idx = len(log_history) - 1
    while idx >= 0 and "eval_loss" not in log_history[idx]:
        idx -= 1

    if idx > 0:
        eval_results = {}
        for key, value in log_history[idx].items():
            if key.startswith("eval_"):
                key = key[5:]
            if key not in ["runtime", "samples_per_second", "steps_per_second", "epoch", "step"]:
                camel_cased_key = " ".join([part.capitalize() for part in key.split("_")])
                eval_results[camel_cased_key] = value
        return train_log, lines, eval_results
    else:
        return train_log, lines, None


def extract_hyperparameters_from_keras(model):
    import tensorflow as tf

    hyperparameters = {}
    if hasattr(model, "optimizer") and model.optimizer is not None:
        hyperparameters["optimizer"] = model.optimizer.get_config()
    else:
        hyperparameters["optimizer"] = None
    hyperparameters["training_precision"] = tf.keras.mixed_precision.global_policy().name

    return hyperparameters


def _maybe_round(v, decimals=4):
    if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals:
        return f"{v:.{decimals}f}"
    return str(v)


def _regular_table_line(values, col_widths):
    values_with_space = [f"| {v}" + " " * (w - len(v) + 1) for v, w in zip(values, col_widths)]
    return "".join(values_with_space) + "|\n"


def _second_table_line(col_widths):
    values = ["|:" + "-" * w + ":" for w in col_widths]
    return "".join(values) + "|\n"


def make_markdown_table(lines):
    """
    Create a nice Markdown table from the results in `lines`.
    """
    if lines is None or len(lines) == 0:
        return ""
    col_widths = {key: len(str(key)) for key in lines[0].keys()}
    for line in lines:
        for key, value in line.items():
            if col_widths[key] < len(_maybe_round(value)):
                col_widths[key] = len(_maybe_round(value))

    table = _regular_table_line(list(lines[0].keys()), list(col_widths.values()))
    table += _second_table_line(list(col_widths.values()))
    for line in lines:
        table += _regular_table_line([_maybe_round(v) for v in line.values()], list(col_widths.values()))
    return table


_TRAINING_ARGS_KEYS = [
    "learning_rate",
    "train_batch_size",
    "eval_batch_size",
    "seed",
]


def extract_hyperparameters_from_trainer(trainer):
    hyperparameters = {k: getattr(trainer.args, k) for k in _TRAINING_ARGS_KEYS}

    if trainer.args.parallel_mode not in [ParallelMode.NOT_PARALLEL, ParallelMode.NOT_DISTRIBUTED]:
        hyperparameters["distributed_type"] = (
            "multi-GPU" if trainer.args.parallel_mode == ParallelMode.DISTRIBUTED else trainer.args.parallel_mode.value
        )
    if trainer.args.world_size > 1:
        hyperparameters["num_devices"] = trainer.args.world_size
    if trainer.args.gradient_accumulation_steps > 1:
        hyperparameters["gradient_accumulation_steps"] = trainer.args.gradient_accumulation_steps

    total_train_batch_size = (
        trainer.args.train_batch_size * trainer.args.world_size * trainer.args.gradient_accumulation_steps
    )
    if total_train_batch_size != hyperparameters["train_batch_size"]:
        hyperparameters["total_train_batch_size"] = total_train_batch_size
    total_eval_batch_size = trainer.args.eval_batch_size * trainer.args.world_size
    if total_eval_batch_size != hyperparameters["eval_batch_size"]:
        hyperparameters["total_eval_batch_size"] = total_eval_batch_size

    if trainer.args.adafactor:
        hyperparameters["optimizer"] = "Adafactor"
    else:
        hyperparameters["optimizer"] = (
            f"Adam with betas=({trainer.args.adam_beta1},{trainer.args.adam_beta2}) and"
            f" epsilon={trainer.args.adam_epsilon}"
        )

    hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value
    if trainer.args.warmup_ratio != 0.0:
        hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio
    if trainer.args.warmup_steps != 0.0:
        hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps
    if trainer.args.max_steps != -1:
        hyperparameters["training_steps"] = trainer.args.max_steps
    else:
        hyperparameters["num_epochs"] = trainer.args.num_train_epochs

    if trainer.args.fp16:
        if trainer.use_cuda_amp:
            hyperparameters["mixed_precision_training"] = "Native AMP"
        elif trainer.use_apex:
            hyperparameters["mixed_precision_training"] = f"Apex, opt level {trainer.args.fp16_opt_level}"

    if trainer.args.label_smoothing_factor != 0.0:
        hyperparameters["label_smoothing_factor"] = trainer.args.label_smoothing_factor

    return hyperparameters