File size: 29,698 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to
update `find_best_threshold` scripts for SQuAD V2.0

In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an
additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted
probability that a question is unanswerable.
"""


import collections
import json
import math
import re
import string

from ...models.bert import BasicTokenizer
from ...utils import logging


logger = logging.get_logger(__name__)


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
        return re.sub(regex, " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def get_tokens(s):
    if not s:
        return []
    return normalize_answer(s).split()


def compute_exact(a_gold, a_pred):
    return int(normalize_answer(a_gold) == normalize_answer(a_pred))


def compute_f1(a_gold, a_pred):
    gold_toks = get_tokens(a_gold)
    pred_toks = get_tokens(a_pred)
    common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
    num_same = sum(common.values())
    if len(gold_toks) == 0 or len(pred_toks) == 0:
        # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
        return int(gold_toks == pred_toks)
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(pred_toks)
    recall = 1.0 * num_same / len(gold_toks)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def get_raw_scores(examples, preds):
    """
    Computes the exact and f1 scores from the examples and the model predictions
    """
    exact_scores = {}
    f1_scores = {}

    for example in examples:
        qas_id = example.qas_id
        gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])]

        if not gold_answers:
            # For unanswerable questions, only correct answer is empty string
            gold_answers = [""]

        if qas_id not in preds:
            print(f"Missing prediction for {qas_id}")
            continue

        prediction = preds[qas_id]
        exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers)
        f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers)

    return exact_scores, f1_scores


def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
    new_scores = {}
    for qid, s in scores.items():
        pred_na = na_probs[qid] > na_prob_thresh
        if pred_na:
            new_scores[qid] = float(not qid_to_has_ans[qid])
        else:
            new_scores[qid] = s
    return new_scores


def make_eval_dict(exact_scores, f1_scores, qid_list=None):
    if not qid_list:
        total = len(exact_scores)
        return collections.OrderedDict(
            [
                ("exact", 100.0 * sum(exact_scores.values()) / total),
                ("f1", 100.0 * sum(f1_scores.values()) / total),
                ("total", total),
            ]
        )
    else:
        total = len(qid_list)
        return collections.OrderedDict(
            [
                ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
                ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
                ("total", total),
            ]
        )


def merge_eval(main_eval, new_eval, prefix):
    for k in new_eval:
        main_eval[f"{prefix}_{k}"] = new_eval[k]


def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
    num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
    cur_score = num_no_ans
    best_score = cur_score
    best_thresh = 0.0
    qid_list = sorted(na_probs, key=lambda k: na_probs[k])
    for i, qid in enumerate(qid_list):
        if qid not in scores:
            continue
        if qid_to_has_ans[qid]:
            diff = scores[qid]
        else:
            if preds[qid]:
                diff = -1
            else:
                diff = 0
        cur_score += diff
        if cur_score > best_score:
            best_score = cur_score
            best_thresh = na_probs[qid]

    has_ans_score, has_ans_cnt = 0, 0
    for qid in qid_list:
        if not qid_to_has_ans[qid]:
            continue
        has_ans_cnt += 1

        if qid not in scores:
            continue
        has_ans_score += scores[qid]

    return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt


def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
    best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
    best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
    main_eval["best_exact"] = best_exact
    main_eval["best_exact_thresh"] = exact_thresh
    main_eval["best_f1"] = best_f1
    main_eval["best_f1_thresh"] = f1_thresh
    main_eval["has_ans_exact"] = has_ans_exact
    main_eval["has_ans_f1"] = has_ans_f1


def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
    num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
    cur_score = num_no_ans
    best_score = cur_score
    best_thresh = 0.0
    qid_list = sorted(na_probs, key=lambda k: na_probs[k])
    for _, qid in enumerate(qid_list):
        if qid not in scores:
            continue
        if qid_to_has_ans[qid]:
            diff = scores[qid]
        else:
            if preds[qid]:
                diff = -1
            else:
                diff = 0
        cur_score += diff
        if cur_score > best_score:
            best_score = cur_score
            best_thresh = na_probs[qid]
    return 100.0 * best_score / len(scores), best_thresh


def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
    best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
    best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)

    main_eval["best_exact"] = best_exact
    main_eval["best_exact_thresh"] = exact_thresh
    main_eval["best_f1"] = best_f1
    main_eval["best_f1_thresh"] = f1_thresh


def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0):
    qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples}
    has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer]
    no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer]

    if no_answer_probs is None:
        no_answer_probs = {k: 0.0 for k in preds}

    exact, f1 = get_raw_scores(examples, preds)

    exact_threshold = apply_no_ans_threshold(
        exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold
    )
    f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold)

    evaluation = make_eval_dict(exact_threshold, f1_threshold)

    if has_answer_qids:
        has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids)
        merge_eval(evaluation, has_ans_eval, "HasAns")

    if no_answer_qids:
        no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids)
        merge_eval(evaluation, no_ans_eval, "NoAns")

    if no_answer_probs:
        find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer)

    return evaluation


def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heuristic between
    # `pred_text` and `orig_text` to get a character-to-character alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for i, c in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        if verbose_logging:
            logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'")
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        if verbose_logging:
            logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'")
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for i, tok_index in tok_ns_to_s_map.items():
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        if verbose_logging:
            logger.info("Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        if verbose_logging:
            logger.info("Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position : (orig_end_position + 1)]
    return output_text


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs


def compute_predictions_logits(
    all_examples,
    all_features,
    all_results,
    n_best_size,
    max_answer_length,
    do_lower_case,
    output_prediction_file,
    output_nbest_file,
    output_null_log_odds_file,
    verbose_logging,
    version_2_with_negative,
    null_score_diff_threshold,
    tokenizer,
):
    """Write final predictions to the json file and log-odds of null if needed."""
    if output_prediction_file:
        logger.info(f"Writing predictions to: {output_prediction_file}")
    if output_nbest_file:
        logger.info(f"Writing nbest to: {output_nbest_file}")
    if output_null_log_odds_file and version_2_with_negative:
        logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}")

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]
    )

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    for example_index, example in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
        min_null_feature_index = 0  # the paragraph slice with min null score
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
        for feature_index, feature in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index],
                        )
                    )
        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit,
                )
            )
        prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"]
        )

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]

                tok_text = tokenizer.convert_tokens_to_string(tok_tokens)

                # tok_text = " ".join(tok_tokens)
                #
                # # De-tokenize WordPieces that have been split off.
                # tok_text = tok_text.replace(" ##", "")
                # tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit))
        # if we didn't include the empty option in the n-best, include it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit))

            # In very rare edge cases we could only have single null prediction.
            # So we just create a nonce prediction in this case to avoid failure.
            if len(nbest) == 1:
                nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        if len(nbest) < 1:
            raise ValueError("No valid predictions")

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for i, entry in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        if len(nbest_json) < 1:
            raise ValueError("No valid predictions")

        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text
        all_nbest_json[example.qas_id] = nbest_json

    if output_prediction_file:
        with open(output_prediction_file, "w") as writer:
            writer.write(json.dumps(all_predictions, indent=4) + "\n")

    if output_nbest_file:
        with open(output_nbest_file, "w") as writer:
            writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

    if output_null_log_odds_file and version_2_with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions


def compute_predictions_log_probs(
    all_examples,
    all_features,
    all_results,
    n_best_size,
    max_answer_length,
    output_prediction_file,
    output_nbest_file,
    output_null_log_odds_file,
    start_n_top,
    end_n_top,
    version_2_with_negative,
    tokenizer,
    verbose_logging,
):
    """
    XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of
    null if needed.

    Requires utils_squad_evaluate.py
    """
    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"]
    )

    _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "NbestPrediction", ["text", "start_log_prob", "end_log_prob"]
    )

    logger.info(f"Writing predictions to: {output_prediction_file}")

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    for example_index, example in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive

        for feature_index, feature in enumerate(features):
            result = unique_id_to_result[feature.unique_id]

            cur_null_score = result.cls_logits

            # if we could have irrelevant answers, get the min score of irrelevant
            score_null = min(score_null, cur_null_score)

            for i in range(start_n_top):
                for j in range(end_n_top):
                    start_log_prob = result.start_logits[i]
                    start_index = result.start_top_index[i]

                    j_index = i * end_n_top + j

                    end_log_prob = result.end_logits[j_index]
                    end_index = result.end_top_index[j_index]

                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= feature.paragraph_len - 1:
                        continue
                    if end_index >= feature.paragraph_len - 1:
                        continue

                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue

                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_log_prob=start_log_prob,
                            end_log_prob=end_log_prob,
                        )
                    )

        prelim_predictions = sorted(
            prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True
        )

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]

            # XLNet un-tokenizer
            # Let's keep it simple for now and see if we need all this later.
            #
            # tok_start_to_orig_index = feature.tok_start_to_orig_index
            # tok_end_to_orig_index = feature.tok_end_to_orig_index
            # start_orig_pos = tok_start_to_orig_index[pred.start_index]
            # end_orig_pos = tok_end_to_orig_index[pred.end_index]
            # paragraph_text = example.paragraph_text
            # final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()

            # Previously used Bert untokenizer
            tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
            orig_doc_start = feature.token_to_orig_map[pred.start_index]
            orig_doc_end = feature.token_to_orig_map[pred.end_index]
            orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
            tok_text = tokenizer.convert_tokens_to_string(tok_tokens)

            # Clean whitespace
            tok_text = tok_text.strip()
            tok_text = " ".join(tok_text.split())
            orig_text = " ".join(orig_tokens)

            if hasattr(tokenizer, "do_lower_case"):
                do_lower_case = tokenizer.do_lower_case
            else:
                do_lower_case = tokenizer.do_lowercase_and_remove_accent

            final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)

            if final_text in seen_predictions:
                continue

            seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob)
            )

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6))

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_log_prob + entry.end_log_prob)
            if not best_non_null_entry:
                best_non_null_entry = entry

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for i, entry in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_log_prob"] = entry.start_log_prob
            output["end_log_prob"] = entry.end_log_prob
            nbest_json.append(output)

        if len(nbest_json) < 1:
            raise ValueError("No valid predictions")
        if best_non_null_entry is None:
            raise ValueError("No valid predictions")

        score_diff = score_null
        scores_diff_json[example.qas_id] = score_diff
        # note(zhiliny): always predict best_non_null_entry
        # and the evaluation script will search for the best threshold
        all_predictions[example.qas_id] = best_non_null_entry.text

        all_nbest_json[example.qas_id] = nbest_json

    with open(output_prediction_file, "w") as writer:
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

    with open(output_nbest_file, "w") as writer:
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

    if version_2_with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

    return all_predictions